Abrupt Climate Oscillations During the Last Deglaciation in Central North America

Zicheng Yu* and Ulrich Eicher

Evidence from stable isotopes and a variety of proxies from two Ontario lakes demonstrate that many of the late glacial-to–early Holocene events that are well known from the North Atlantic seaboard, such as the Gerzensee-Killarney Oscillation (also known as the Intra-Allerød Cold Period), Younger Dryas, and Preboreal Oscillation, also occurred in central North America. These results thus imply that climatic forcing acted in the same manner in both regions and that atmospheric circulation played an important role in the propagation of these events.

The transition from the last glacial maximum to the present interglacial (Holocene) has great importance in understanding how Earth’s climate system can abruptly switch from one state to another. The most detailed records of this transition—the late glacial period—are from the North Atlantic region, which appears to have acted as either a trigger or an amplifier of late glacial climate events. This transition (~13,000 to 9000 14C years before the present (yr B.P.)) was characterized by several broad-scale climatic oscillations in the North Atlantic region (1–6). Isotopic records from Europe (4, 7, 8) and Greenland ice cores (2, 3) reveal a late glacial climate sequence in which the warm Bolling-Allerød (BOA) was followed by the cold Younger Dryas (YD) at ~11,000 to 10,000 14C yr B.P. and then by the warm Holocene. In continental North America, however, climate proxy data provide mixed and limited evidence for these climate oscillations (9), and this sequence was not seen in isotopic records (10). Establishing the geographic extent, sequence, and magnitude of these climate oscillations is essential for understanding the mechanisms and causes of abrupt short-term climatic changes.

Here we describe several sedimentary records from two small lakes (Fig. 1), which show the late glacial and early Holocene climate changes. The two sites from separate basins eliminate local hydrology as the cause of observed changes. The basins are predominately situated in Ordovician and Silurian dolomites covered by thin glacial deposits.

Three cores of sediment from Crawford Lake (43°28′N, 79°57′W) and one from Twiss Marl Pond (informal name; 43°27′N, 79°57′W) were analyzed for carbonate stable isotopes (δ18O and δ13C), lithology, elemental geochemistry, pollen, plant macrofossils, and freshwater gastropods. The δ18O values from bulk marl and mollusk shells were used as proxy for temperature (11). Other proxy data were used to infer lake and watershed conditions during climatic changes (Fig. 2). Chronology was controlled by four AMS 14C dates on terrestrial plant macrofossils and by correlation with dated regional pollen sequences (13).

The δ18O/δ16O ratios (δ18O) in authigenic lake carbonates are a proxy of continental climate and depend on the isotopic composition of lake water and on water temperature. The isotopic fractionation between calcite and water varies by ~0.24 per mil (‰) per degree celsius of temperature (14). A strong positive link between δ18O in atmospheric precipitation and mean annual surface temperature exists in the high and mid-latitude regions; the average coefficient is about ~0.6‰ per degree celsius (15). The combination of these two factors and the assumption that water temperature closely tracks air temperature lead to an estimate of a coefficient of 0.36‰ per degree celsius between δ18O in carbonate and air temperature. In the late glacial and early Holocene, the climate in the Great Lakes region resembled that of a high-latitude region. A strong temperature gradient likely prevailed immediately south of the continental ice sheets (16). The climatic regime during that time may have imposed a strong link between δ18O and temperature, so the variation of temperatures along this strong gradient might be sensitively reflected in δ18O values of atmospheric precipitation.

The δ18O results from mollusk shells (Fig. 2A) and from Chara encrustations and bulk marl (17, 18) at Twiss Marl Pond show a negative shift of 1.3‰ at 10,920 14C yr B.P. (at 490 cm) and a positive shift of up to 2‰ at ~10,000 14C yr B.P. (at 390 cm). The more negative intervening interval indicates a cold period corresponding with the YD event. A minor negative excursion of 0.4‰ at 9600 14C yr B.P. (at 370 to 380 cm) may correlate with the Preboreal Oscillation (PB) (1–5, 7). This minor oscillation is also indicated by the recurrence of Picea pollen at Twiss Marl Pond and more clearly at Crawford Lake and by a distinct minerogenic layer (Fig. 2B). Before the YD interval, another slight negative excursion of δ18O at 500 to 510 cm in mollusk shells may correlate with the Gerzensee Oscillation (G) in central Europe (7, 4), the Killarney Oscillation (K) in Atlantic Canada (6), and the Intra-Allerød Cold Period (IACP) in Greenland (1–3). It is also indicated by a peak for elemental A1.

The δ18O profile of core SC (Fig. 2C) from the shallow basin at Crawford Lake shows the BOA warming at ~12,500 14C yr B.P. (minimum 1% positive shift in δ18O from 378.5 to 374 cm); the BOA warm period from ~12,300 to 11,000 14C yr B.P. (from 374 to 361 cm); a pre-YD cooling event, corresponding with G/K/IACP oscillations,

*To whom correspondence should be addressed at the Canadian Forest Service, 5320 122 Street, Edmonton, Alberta T6H 3S5, Canada. E-mail: zyu@nrcan.gc.ca

Z. C. Yu, Department of Botany, University of Toronto, Toronto, Ontario MSS 3B2, Canada, and Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, Ontario MSS 2C6, Canada. U. Eicher, Climate and Environmental Physics, Physics Institute, University of Bern, CH-3012 Bern, Switzerland.

Fig. 1. Map showing locations of Crawford Lake and Twiss Marl Pond at the edge of Ontario’s Niagara Escarpment, Canada (A), and coring locations (DC, SC, and BC) at Crawford Lake (B).
shortly before 11,000 14C yr B.P. (at 364 cm: -0.8% negative excursion); the YD cold period from 11,000 to 10,000 14C yr B.P. (from 361 to 350 cm: 1.5% negative excursion); the Holocene warming at 10,000 yr B.P. (at 351 cm: $+1.5\%$ positive shift); and the PB at 9650 14C yr B.P. (at 344 cm: 0.4% negative excursion). Cores DC (Fig. 2B) and BC (Fig. 2D) at Crawford Lake show similar patterns but with a thinner record and lower temporal resolution.

These observed patterns cannot be attributed to local hydrological effects, because (i) similar patterns are seen at the two sites, (ii) dissolution of dolomite bedrock (with a δ^{18}O value of -6.46%) as suggested by elemental geochemistry and lithology analysis (Fig. 2) (18) cannot account for the observed patterns, and (iii) the δ^{18}O records from both sites correlate well with the δ^{18}O records from Greenland ice cores (Fig. 3) and central European lake sediments. For the carbonate δ^{18}O–air temperature correlation of 0.36‰ per degree celsius, the 1‰ decrease in δ^{18}O at the beginning of the YD event could imply a 3°C decrease in mean annual air temperature, and the 2‰ increase at the beginning of the Holocene could imply a 6°C increase. This relation may, however, not be valid for long-term climatic change. For example, we have no independent data to evaluate the evaporative enrichment of δ^{18}O (19). The δ^{18}O values suggest that temperature or precipitation (or both) may have fluctuated during the YD event, as also seen in European (7) and Greenland isotopic records (Fig. 3). The YD event appears to have been cold at the beginning and slightly warmer in the middle. The variations during the YD interval are also indicated by elemental concentrations and sediment composition at two study sites. These new records are comparable in sequence and relative magnitude with records from ice cores (2, 3), and marine (1) and European lacustrine sediments (4, 7, 8).

At Twiss Marl Pond and Crawford Lake, the YD cooling is indicated by a negative excursion in δ^{18}O values together with a persistence of and slight increase in shrub and herb pollen, a slight decrease of pollen concentration, decreased carbonate, and in-

Fig. 2. Combined diagrams of proxy climate data recorded in the late glacial and early Holocene sediments at Twiss Marl Pond (A) and in core DC (B), core SC (C), and core BC (D) at Crawford Lake. PB, Preboreal Oscillation; G/K/IACP, Gerzensee (7), Killarney (6), and Intra-Allerød Cold Period (1); V-PDB, Vienna Pee Dee belemnite; PAZ, pollen assemblage zones. At Twiss Marl Pond, the δ^{18}O was measured on shells of two mollusk species, *Pisidium ferrugineum* (lower thick line) and *Valvata sincera* (upper thin line). A more detailed discussion is given elsewhere (18). All data will be available at www.ngdc.noaa.gov/paleo/paleo.html.
The AMS14C dates at the HE-5 here is dated at approximately 750014C yr B.P., based on the major Crawford Lake, the ser counting, and the dar ages from GISP2 transition and is equivalent to the cooling event at Greenland Summit at 8200 calendar years B.P. SC, heavy curve; core Crawford Lake (core respectively, from the North Atlantic marine Holocene Events 5 and 8 (HE-5 and HE-8), This prominent Holocene climatic event is about half the magnitude of the YD cooling. The increase of灌溉 vegetation at that time (8) may be a contributory factor to the increased erosion-derived elements, all of which suggest more openings in forests and accelerated soil erosion under a cold climate. The lack of strong upland vegetation-al evidence for the YD at the two study sites is attributed to an insensitive response of the noncotone forest at that time. A decrease in calcite precipitation or an increase in eroded minerogenic matter during the YD cold interval has been recorded at marl lakes in Switzerland (4).

Two cores (SC and BC) from Crawford Lake (Fig. 3) also show evidence for the short-term cooling event at approximately 8200 calendar yr B.P. (~7500 14C yr B.P.). The 818O values drop by ~0.8% then, or about half the magnitude of the YD cooling. This prominent Holocene climatic event is widespread and has left a global record (20, 21). This event and the PB have been termed Holocene Events 5 and 8 (HE-5 and HE-8), respectively, from the North Atlantic marine sediments (22). At Crawford Lake after ~6500 14C yr B.P., the δ18O profiles (23) are no longer correlative with Greenland isotopic records, which suggests that the climatic regime appears to have changed and that climatic change occurred more frequently on a regional basis.

The sequence and relative magnitude of late glacial–early Holocene climatic changes recorded at Crawford Lake and Twiss Marl Pond match in detail the records from the North Atlantic region and indicate that these oscillations are probably an expression of broad climatic changes. Our data show that, in addition to the YD, other minor oscillations (PB and G/K/IACP) affected the climate beyond the North Atlantic region. The close match of the δ18O records at the two sites presented in this study and at other sites in the North Atlantic region indicates that the climatic forcing acted in the same manner in both the North Atlantic region and interior North America and that the climatic signals were probably carried through the atmosphere over the Northern Hemisphere.

References and Notes

12. The analytical procedure and methodology used are similar to that used for marine sediment [J. M. McCarra, J. Chem. Phys. 18, 849 (1950)]. Each sample of 5 to 40 mg of carbonate was reacted with 95% phosphoric acid (H3PO4) at a constant temperature of 50°C for 1 hour to produce CO2. The CO2 was then mass spectrometer (Finnigan MAT 250) at the University of Bern (19). The results are presented as conventional delta notation (δ), which is defined as [δRsample - δstandard]/δstandard × 1000, where δR is the absolute ratio of δ18O/δ16O or δ13C/δ12C, and the Vienna-PDB (Pee Dee belemnite) is the standard. The analytical precision is ±0.02‰ for both δ18O and δ13C. The authigenic calcite is the dominant carbonate in bulk samples, as confirmed at selected levels by calcite and dolomite determinations, petrographic microscope analysis, and almost identical isotope values of Chiarra encrustations and corresponding bulk samples (18).
13. The organic matter and carbonate contents of sediments were estimated by loss-on-ignition analysis. Elemental concentrations were determined by neutron activation analysis of bulk sediment. Four cores at two sites show a sediment sequence from clayey marl to marl (Fig. 2). See (18) for detail on lithology and elemental stratigraphy. Pollen stratigraphy indicates a change in vegetation from an Alnus, Cyperaceae, Salix sparsa (subzone 1a) through Salix, Cyperaceae, Artemisia dense tundra (subzone 1b) and Picea woodland (zone 2) to Pinus forest (zone 3) (Fig. 2). The vegetation reconstruction was substantiated by plant macrofossils from two sites (18).
14. Two accelerator mass spectrometry (AMS) 14C dates from 355 to 337 cm and 345 to 347 cm of core DC at Crawford Lake bracket a mineral-rich sediment band, corresponding with the PB as indicated by the Picea pollen recurrence (Fig. 2B). The date of 9620 ± 60 yr B.P. (CAMS-16062) are statistically indistinguishable because of a 1σ plateau around 9600 14C yr B.P. [B. Becker, B. Kromer, P. Trumbore, Nature 353, 647 (1991); J. Haidas et al., Clim. Dyn. 9, 107 (1993)]. The AMS date of 10390 ± 80 14C yr B.P. (TO-5505) from Twiss Marl Pond (Fig. 2A) is used for the lower boundary of the YD interval, as correlated with the negative shift in δ18O within the Picea pollen zone. Other dates are based on local deglaciation history and regional pollen correlation. The base of the records was tentatively assigned an age of 13,000 14C yr B.P. based on deglaciation history [P. J. Barnett, Can. J. Earth Sci. 16, 568 (1979)]. The shrub/herb-Picea pollen transition (zone 1/2 at the boundary) was about 12,000 14C yr B.P., estimated from nearby dated sites [R. J. Mott and L. D. Farley-Gill, Can. J. Bot. 15, 1101 (1978); J. Terasmae and H. L. Matthews, Can. J. Earth Sci. 7, 1087 (1970)].
15. The age of the Picea-Pinus pollen transition (zone 2/3) was close to 10,000 14C yr B.P., as interpolated and extrapolated from Crawford Lake and other sites [K. D. Bennett, Can. J. Bot. 65, 1792 (1987); J. M. Szeicz and G. M. MacDonald, ibid. 69, 1507 (1991)]. The Pinus--Tsuga-Fagus pollen transition (zone 3/4) has an age of close to 7500 14C yr B.P. [J. H. McFarland, in Quaternary Palaeoclimate, W. C. Mahaney, Ed. (Geo Abstracts, Norwich, England, 1981), pp. 319–333].
19. Z. C. Yu and U. Eicher, data not shown.
21. U. Siegenthaler and U. Eicher, in Handbook of Holo-
The Percolation Phase Transition in Sea Ice

K. M. Golden,* S. F. Ackley, V. I. Lytle

Sea ice exhibits a marked transition in its fluid transport properties at a critical brine volume fraction p_c of about 5 percent, or temperature T_c of about -5°C for salinity of 5 parts per thousand. For temperatures warmer than T_c, brine carrying heat and nutrients can move through the ice, whereas for colder temperatures the ice is impermeable. This transition plays a key role in the geophysics, biology, and remote sensing of sea ice. Percolation theory can be used to understand this critical behavior of transport in sea ice. The similarity of sea ice microstructure to compressed powders is used to theoretically predict p_c of about 5 percent.

Sea ice is a complex, composite material consisting of pure ice with brine and air inclusions, whose size and geometry depend on the ice crystal structure, as well as the temperature and bulk salinity. It is distinguished from many other porous composites, such as sandstones or bone, in that its microstructure and bulk material properties vary dramatically over a small temperature range. For brine volume fractions p below a critical value $p_c \approx 5\%$, columnar sea ice is effectively impermeable to fluid transport, whereas for p above p_c (>5%) brine or sea water can move through the ice. The relation of brine volume to temperature T and salinity S (1) implies p_c corresponds to a critical temperature $T_c \approx -5^\circ$C for $S = 5$ ppt; we refer to this critical behavior as the “law of fives.” Perhaps the most direct observations of this are that the rate of change of sea ice salinity dS/dt due to gravity drainage vanishes for brine volumes below 5% (2, 3) and that the permeability of thin sea ice decreases by more than two orders of magnitude as the surface temperature is lowered, in a small critical region around -5°C (4).

Brine transport is fundamental to such processes as sea ice production through freezing of flooded ice surfaces, sea ice heat fluxes, and nutrient replenishment for sea ice algal communities, as well as being an important factor for remote sensing. However, the basic transition controlling brine transport has received little attention. Percolation theory (5, 6) has been developed to analyze the properties of materials where connectivity of a given component determines the bulk behavior. We show that it provides a natural framework to understand the critical behavior of sea ice. In particular, we apply a compressed powder percolation model to sea ice microstructure that explains the law of fives, the observed behavior (4) of the fluid permeability in the critical temperature regime, as well as data on surface flooding collected recently on sea ice in the Weddell Sea and East Antarctic regions.

It was observed in the Arctic (7) that a snow storm and its resultant loading on a sea ice layer can induce a complete upward flushing of the brine network. In the Antarctic, it was observed that the freezing of a surface slush layer, with resultant brine drainage, induced convection within the ice, whereby rejected dense brine is replaced by nutrient-rich sea water from the upper ocean (8), fueling autumn blooms of algae in second-year ice (9). During the autumn freeze-up, this process provided about 70% of the salt flux into the upper ocean and increased the total heat flux through the overlying ice and snow cover. The proliferation and growth of sea ice organisms is favored by permeable ice, which allows nutrient replenishment (10, 11). For remote sensing, surface flooding and subsequent freezing can affect microwave backscatter from sea ice (12, 13), and connectedness of the brine inclusions affects the permittivity of sea ice (14, 15). As yet another example, it was observed in the Arctic that there was about a 20-day time lag between the start of the spring snow melt and the occurrence of freshwater input into the mixed layer (16, 17). Presumably, part of this lag was the time it took for the ice sheet to warm to above the critical temperature to allow drainage out of the ice (16).

Percolation theory (5, 6) has been used to successfully model a broad array of disordered materials and processes. The simplest form of the lattice percolation model (6) is defined as follows. Consider the d-dimensional integer lattice Z^d and the square (or cubic) network of bonds joining nearest neighbor lattice sites. To each bond, with probability $p = 0 \leq p \leq 1$, we assign a 1, meaning it is open, and with probability $1 - p$ we assign a 0, meaning it is closed. Groups of connected open bonds are called open clusters, and the size of a cluster is the number of open bonds it contains. In the percolation model, there is a critical probability p_c, $0 < p_c < 1$, called the percolation threshold, at which the average cluster size $\langle s \rangle$ diverges and an infinite cluster appears, so that the open bonds percolate. In two dimensions, $p_c = 0.5$; in three dimensions, $p_c \approx 0.25$. For $p > p_c$, the infinite cluster density $P_s(p)$ exhibits power law behavior near the threshold, $P_s(p) \sim (p - p_c)^{-\alpha}$, where α is the percolation critical exponent, $\alpha \approx 1.6$. This model deals only with the geometrical aspects of connectedness in disordered media, yet we are interested in the transport properties as well. Then we consider a random resistor network, where the bonds are assigned the conductivities 1 and 0 with probabilities p and $1 - p$. With $h = 0$, for $p < p_c$, the effective conductivity $\sigma(p) = 0$, whereas near the threshold with $p > p_c$, $\sigma(p)$ exhibits power law behavior $\sigma(p) \sim (p - p_c)^{-\beta}$, where β is the conductivity critical exponent, with $1 \leq \beta \leq 2$ in $d = 2$ (18). Analogously, we may consider a random pipe network with effective fluid permeability $k(p)$ exhibiting similar behavior $k(p) \sim (p - p_c)^{-\epsilon}$, where ϵ is the permeability critical exponent, with $0 < \epsilon \leq 1$. Critical exponents for lattice models are generally believed to exhibit universality, meaning that they depend only on dimension and not on the type of lattice, although continuum models can exhibit nonuniversal behavior, with exponent values different from the lattice case, $t > 2$ in $d = 3$, and $\epsilon \neq 1$.

If the above lattice model is applied to sea ice, where the open bonds represent brine and the closed bonds represent ice, then p_c would be about 25% in $d = 3$, which is much larger than the observed 5%. Even continuum models, such as ellipsoidal brine inclusions randomly distributed in an ice host (a commonly used model for sea ice), exhibit critical volume fractions in the 20 to 40% range (19). Instead,

*To whom correspondence should be addressed. E-mail: golden@math.utah.edu