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INTRODUCTION

Parentage analysis in mating systems has traditionally
relied on behavioral observations during breeding
(Krebs and Davies, 1997). With the advent of molecular
techniques in behavioral and evolutionary ecology,
genetic markers have gained widespread use and are
often used exclusively to assess parentage (for reviews see
Queller et al., 1993; Avise, 1994; Jarne and Lagoda, 1996;
Petrie and Kempenaers, 1998; Luikart and England,
1999; Sunnucks, 2000). Although both forms of biologi-
cal data can be informative (e.g., Adams et al., 1992;
Philipp and Gross, 1994; Burczyk et al., 1996; Prodo� hl
et al., 1998; but see Coltman et al., 1999; Smouse et al.,
1999), few studies have incorporated both in parentage
analyses. In this paper we develop a framework based on
genetic likelihood and fractional allocation theory
(Devlin et al., 1988; Roeder et al., 1989; Smouse and
Meagher, 1994) that allows the incorporation of addi-
tional biological information along with genetic marker
data in the calculation of parentage and we explore its
importance in providing accurate parentage inference.
We also provide statistical confidence estimators for the
fractional models.

Parentage analysis is required to discern parentage in
breeding systems that have multiple mating. Multiple
mating occurs when individuals of one sex mate with
more than one partner of the opposite sex (Reynolds,
1996). There are two general forms of multiple mating
(Neff et al., 2000a): single-sex where there is multiple
mating within only one sex, and two-sex where there is
multiple mating by both sexes. In single-sex multiple
mating, the offspring are produced by a single female that
has mated with multiple males or a single male that has
mated with multiple females. For example, a female coho
salmon (Oncorhychus kisutch) may mate with up to four
males. In this case, we are interested in determining the
proportion of her offspring that are sired by each of the
males. In two-sex multiple mating, the offspring are
produced by multiple males and multiple females that
may each have mated with several individuals. For
example, in bluegill sunfish (Lepomis macrochirus) the off-
spring within a nest may be from several females, each of
which has mated with the nest-tending parental male as
well as other specialized males called cuckolders. In this
case, we are interested in determining not only the
proportion of offspring sired by each male, but also the
proportion sired with each female. Both single-sex and
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two-sex multiple mating occur widely in nature, and
therefore models that allow for each are needed. We have
recently developed models and confidence estimators for
parentage analysis of offspring produced from single-sex
or two-sex multiple mating and when there is incomplete
sampling of candidate parents (Neff et al., 2000a, b).
Here, we develop models that assume complete sampling
of candidate parents.

There are three basic approaches for calculating par-
entage when all candidate parents have been sampled:
(1) exclusion; (2) categorical allocation; and (3) frac-
tional allocation. Exclusion methods (e.g., Ellstrand,
1984) attempt to eliminate all but one of the candidate
parents (or parent pairs) based on the available genetic
data. When two or more parents cannot be excluded then
the assignment of the offspring remains ambiguous.
Although potentially an accurate method, exclusion
approaches are inefficient, often requiring a large number
of loci (e.g., Chakraborty et al., 1988). As such, this
approach is generally not feasible, particularly for large
studies involving numerous parents and offspring.

Categorical allocation methods (e.g., Meagher, 1986;
Meager and Thompson, 1986, 1987) use a log-likelihood
ratio, or LOD score, to select the single most likely
parent and have the apparent advantage of identifying
parent�offspring relationships, which might be useful, for
example, when analyzing heritability. Only when two
parents have equivalent most likely LOD scores, for
example, when they have the same genotypes, does
parentage remain ambiguous. A Monte Carlo simulation
approach has also been developed to assess the statistical
confidence in the categorical assignments (Marshall et
al., 1998). However, categorical allocation can systemati-
cally overestimate the fertilization success of homo-
zygous individuals while underestimating the success of
heterozygous individuals (Devlin et al., 1988; Smouse
and Meagher, 1994). This can be particularly problem-
atic when assessing inbreeding depression, since inbred
individuals are more homozygous and are therefore
favored by the analysis. A reduction in fertilization success
resulting from inbreeding depression may subsequently
be obscured.

Devlin et al. (1988) show that if offspring are instead
fractionally allocated among all nonexcluded parents
based on their probability of parentage the bias asso-
ciated with the categorical assignments is circumvented.
They provide the first fractional allocation model, which is
based solely on transitional (Mendelian) probabilities,
and demonstrate how their model can be used to partition
individual offspring among candidate parents. Although
this initial fractional model is for single-sex multiple
mating (i.e., when one genetic parent is known), it is easily
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amendable to two-sex multiple mating where neither parent
is known.

Roeder et al. (1989) later develop a maximum
likelihood method (similar to fractional models) that



incorporates multiple offspring simultaneously in the
analysis of parentage (see also Smouse and Meagher,
1994). This approach does not specifically allocate
individual offspring, but determines the parentage param-
eters across all candidate parents that are most likely to
have generated the offspring sample (the solution is
referred to as the ``mle''). This approach is superior when
the probabilities of parentage of the offspring are not inde-
pendent, for instance, when the offspring sample is from a
single nest where each competing male may have sired
multiple offspring. Roeder et al. develop models for both
single-sex and two-sex multiple mating and provide
variance estimators for when the transitional probability
matrix is of full column rank (i.e., the genetic contribution
of each candidate parent is uniquely identifiable).

Alternatively to modeling the fertilities of individuals,
other authors (Burczyk et al., 1996; Smouse et al., 1999)
have substituted a function based on biological variables
these could include body size of the candidate parents or
distances between mates) into fractional or categorical
models and use maximum likelihood procedures to solve
for the most likely relationships between the variables
and the probability of parentage. Instead of calculating
reproductive success for each individual, this approach
attempts to map the variance in reproductive success
directly onto a set of biological variables. This approach
may be particularly useful when the goal is to determine
the fitness contribution of specific characters, and not
individuals.

A potential shortcoming of many parentage models is
that they assume a uniform prior probability distribu-
tion. That is, a priori, they assume that each candidate
parent is equally likely to fertilize a given offspring, or
that each possible biological function is equally likely.
This might be the best assumption in the absence of any
information about the actual distribution of the prior
probabilities (Devlin et al., 1988). However, it leads to an
underestimation of the true variance in reproductive suc-
cess as individuals with high reproductive success are
underestimated while those with low reproductive suc-
cess are overestimated (Adams et al., 1992; this paper).
Examining parentage within a plant population, Adams
et al. (1992) utilize additional biological data to provide
an estimate of the actual prior probability distribution.
Using a categorical approach, they show that incor-
porating the additional data increases the accuracy of
their parentage inference.

In this paper we develop a Bayesian framework for
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parentage analysis that builds on previous models and
utilizes genetic and other biological data. Our framework
can be used for either single-sex and two-sex multiple
mating. Specifically, we provide algorithms to calculate
the expected fertilities, instead of the most likely fertilities
calculated by previous models. We show that given the
prior probability of parentage, the expected fertilities are
unbiased and provide accurate estimates of the true
variance in reproductive success. We also show how
these algorithms can be used to calculate the confidence
in the estimates. These confidence statistics have not pre-
viously been available for fractional allocation models.
We develop our single-sex and two-sex multiple mating
models concurrently since they have analogous structure.
The development involves five steps. First, formulas are
presented to calculate the transitional probability, a
measure of the genetic compatibility of parents and off-
spring that is based on Mendelian inheritance patterns
(see Devlin et al., 1988). Second, we define the parentage
vector, which contains the parentage assignments, and
the offspring vector, which contains the offspring genetic
data (see Roeder et al., 1989). Third, formulas are pre-
sented to calculate the probability of a parentage vector
based on the transitional probabilities, the offspring
vector and, if available, additional biological data
(see Adams et al., 1992) such as behavioral observations
during breeding. Fourth, we provide methods to deter-
mine the most likely and expected parentage vector. Fifth,
formulas are presented to determine the confidence in the
parentage assignments. Next, we use simulations to
examine the effects of key assumptions made by these
models. Finally, we present several biological examples
to demonstrate the application of the models.

THE MODELS

1. The Transitional Probability

We begin by defining the transitional probabilities for
single-sex and two-sex multiple mating. Here we use
single-sex to imply that one genetic parent is known and
this individual may have mated multiply. Two-sex
implies that neither genetic parent is known and each
may have mated multiply. Thus, for two-sex multiple
mating all combinations of parent pairs must be con-
sidered. Note that the single-sex model may be used for
mating systems with two-sex multiple mating provided
that one genetic parent is known for the entire sample
of offspring of interest. In this case, the sample of off-
spring would have been produced by single-sex multiple
mating. For both single-sex and two-sex multiple mating

317
we assume that all candidate parents have been sam-
pled. However, for two-sex multiple mating, we also con-
sider the case where only one sex has been completely
sampled.



The transitional probability represents the probability
that an individual is an offspring of a putative parent or
parent pair and is based on Mendelian inheritance. It
equals zero if, at any locus, either the mother or the
father can be excluded as a potential genetic parent.
When loci are linked, the transitional probability can be
calculated with modification (see Devlin et al., 1988).
Linkage reduces the effective number of loci and the
precision of parentage analysis, but itself can be used to
infer additional dimensions of relatedness such as dif-
ferentiating grandmother�granddaughter from aunt�
niece (Thompson and Meagher, 1998). Sample calcula-
tions of transitional probabilities for single-sex and two-
sex multiple mating are provided in Tables I and II,
respectively. Similar tables are presented in other papers
(e.g., Meagher, 1986; Marshall et al., 1998).

(a) Complete sampling of candidate parents from both
sexes (single-sex or two-sex multiple mating). Suppose
that we have a set of M putative mothers, F putative
fathers, and C unique offspring genotypes. There is a
total of A=M } F parent pairs and A } C mother�
father�offspring combinations. Note that for single-sex
multiple mating either M or F equals 1. For each of these
triplets the transitional probability can be calculated
from

Tac=T(gc | gm , gf)= `
L

l=1
\ :

2

i=1

:
2

j=1

t lij+ , (1)

where Tac is the transitional probability for the a parent
pair (consisting of the m mother and f father) and c off-
spring triplet; tlij equals 0.25 if the combination of the m
mother's allele i and the f father's allele j is equivalent to

TABLE I

Sample Calculations of the Transitional Probability (T ac) for Single-Sex
Multiple Mating.

Genotypes

Genetic Putative
parent parent Offspring Tac

BB BB BB 1
BB BC BC 1�2
BC BB BC 1�2
BC BC BC 1�2
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BB BB BC 0

Note. The genetic parent refers to the known parent that has mul-
tiple mates. Genotypes are represented by uppercase letters.
TABLE II

Sample Calculations of the Transitional Probability (Tac) for Two-Sex
Multiple Mating Given Complete Sampling of Both Sexes or Only One
Sex.

Genotypes

Parent(s) Offspring Sl Fl Tac

Both sexes sampled

BB_BB BB �� �� 1
BB_BC BB �� �� 1�2
BC_BC BC �� �� 1�2
BC_BC BB �� �� 1�4
BB_BB CC �� �� 0

Only one sex sampled

BB BC 1 c c
BC BB 1�2 b 1�2 } b
BC BC 1 1�2 } (b+c) 1�2 } (b+c)
BB BB 1 b b
BB CC 0 �� 0

Note. Genotypes are represented by uppercase letters and the pop-
ulation allele frequencies are represented by corresponding lowercase
letters. All other variables are defined in the text.

the c offspring's genotype at locus l; otherwise tlij equals
0; g is the multilocus genotype of the m mother, f father,
or c offspring; and L is the total number of loci utilized
to genotype the triplet.

(b) Complete sampling of only one sex (two-sex multiple
mating only). Suppose that we have sampled only the M
putative mothers or F putative fathers. There is a total of
A=M or A=F putative parents and A } C parent�off-
spring combinations. For each of these parent�offspring
pairs the transitional probability can be calculated from

Tac=T(gc | ga)= `
L

l=1

(Sl } F l), (2)

where Tac is the transitional probability for parent a and
offspring c; Fl equals the frequency of the c offspring's
allele at locus l when it is homozygous and shares the
allele with parent a; Fl equals the average frequency of the
c offspring's alleles when it is heterozygous and shares both
alleles with parent a; or Fl equals the frequency of the c off-
spring's unshared allele when it shares exactly one allele
with parent a; g is the multilocus genotype of the a parent
and c offspring; L is the total number of loci utilized to
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genotype the parents and offspring; and Sl is the propor-
tion of the a parent's alleles that are shared by offspring c.

The transitional probabilities associated with all com-
binations of candidate parents and offspring are then



grouped into the T matrix, which has rows that
correspond to each parent or parent pair (indexed by a
and hereafter referred to as parent) and columns that
correspond to each unique offspring genotype (indexed
by c). T has A rows and C columns and is defined by

T11 } } } T1C

T= } b
. . . b } . (3)

TA1 } } } TAC

The element of row a and column c (Tac) is therefore
the transitional probability associated with the a parent
and the c unique offspring genotype and is calculated
using either (1) or (2). Devlin et al. (1988) used the tran-
sitional probabilities exclusively to partition individual
offspring among candidate parents.

2. The Parentage and Offspring Vectors

Next, following Roeder et al. (1989), define the parent-
age vector Par=(Par1 , Par2 , ..., ParA) with elements
representing the potential parentage assignments,
expressed as a proportion of the total offspring sample, of
each of the candidate parents. Par therefore has A
elements, which correspond to the rows in T. Also define
the offspring vector X=(X1 , X2 , ..., XC) with elements
representing the number of offspring in the sample that
have genotype gc . X therefore has C elements, which
correspond to the columns in T.

Given T and X, the parentage of each parent or parent
pair could be calculated using standard matrix algebra
by solving the equation Par } T=X (Schoen and Stewart,
1986; Roeder et al., 1989). However, since biological
systems have random variation in Mendelian inheritance
(following the multinomial distribution) this is generally
impossible (i.e., it is unlikely that X will fall in the row
space of T). Instead, all possible parentage assignments
to the A parents (i.e., all possible parentage vectors) must
be considered. From Bayes' rule we can calculate the
probability of a particular parentage vector Par based on
the transitional probability matrix T, the offspring vector
X, and, if available, additional biological data. We for-
malize the calculations below.

3. The Probability of a Parentage Vector

Models for Parentage Analysis
The probability of Par given X can be calculated from

Pr(Par | X)=
Pr(X | Par) } Pr(Par)

Pr(X)
. (4)
The probability of X, Pr(X), can be calculated from the
multinomial theorem. However, it is unnecessary to
determine it here since it is independent of Par and will
later become part of a normalization constant. Based on
the multinomial theorem the probability of X given Par
(sometimes called the likelihood) can be calculated from
(modified from Roeder et al., 1989)

Pr(X | Par)=\ N !
> i (Xi!)+ } `

C

c=1

9 Xc
c , (5)

where

9=Par b T (6)

i.e.,

9c=Par1 } T1c+Par2 } T2c+ } } } +ParA } TAc .

The final component of (4) is Pr(Par) which represents
the prior probability of a given Par vector (i.e., independent
of the genetic data). In previous fractional allocation
models it has been assumed that this probability follows
a uniform distribution (see Devlin et al., 1988; Pena and
Chakraborty, 1994; Smouse and Meagher, 1994), and
therefore, a priori all parentage vectors are equally likely.
Hence Pr(Par) is a constant and like Pr(X) becomes part
of the normalization constant. In this case, Pr(Par | X) is
calculated directly from Pr(X | Par). However, the actual
distribution of Pr(Par) depends, in part, on the dynamics
of the mating system, such as whether all males are
equally likely to be genetic fathers. As an example, sup-
pose that in a mating system males compete to control a
harem of females and only the dominant male will
reproduce with them. In this case, Pr(Par) does not
follow a uniform distribution. Instead, the probability of
all parentage vectors that do not assign the parentage
of all offspring from the harem to a single male should be
zero. Assuming that Pr(Par) follows a uniform distri-
bution will lead to biased parentage inference and
underestimates the variance in reproductive success. We
quantify the effects of this assumption below under
Assumption Violation.

Adams et al. (1992) show that additional biological
data can be used to estimate the actual prior probability
distribution. Although they provide a function specific
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to their mating system, their analysis can be easily
generalized. Suppose that the biological data are in the
form of a set of traits t that relate to parentage. The dis-
tribution PrB(Par) (we use the subscript ``B'' to denote



the additional biological data used to estimate the prior
probability) can be expressed as

PrB(Par)=F(t1 , t2 , t3 , ...), (7)

where ti is a vector containing A elements reflecting the
states of a biological trait i for each of the A parents, and
F is a function relating these traits to the prior probabil-
ity of Par. Here we assume that each trait ti has a finite
number of states (i.e., values that the trait can take on)
and that the traits are independent. Accordingly,
PrB(Par) can be calculated from

PrB(Par)=k } `
ia

Pr(Para | tia), (8)

where k is the normalization constant and t ia represents
the value of trait i for parent a. The product is calculated
over all traits and parents.

Categorizing each trait into a finite set of states does
not exclude traits that have a continuous distribution.
For example, if for trait i there is a linear relationship
between ti and PrB(Par), then the confidence interval
around the linear regression can be used to calculate
Pr(Para | t ia) in (8). If multiple dependent biological
traits are used then statistical procedures such as
principal components analysis can generate a set of
independent traits. Essentially, we are after a function
that accurately relates a set of biological traits to the
probability of parentage (for specific examples see
Adams et al., 1992; Burczyk et al., 1996; Smouse et al.,
1999).

4. The Most Likely and Expected Parentage
Vector

Given the formula for the probability of a particular
parentage vector (Eq. 4), the most likely and expected
parentage vectors can be calculated. The most likely
parentage vector, which is calculated by all previous
models, maximizes Pr(Par | X) [or Pr(X | Par)] and
represents the single most probable parentage assign-
ments. In Appendix 1 we present an iterative algorithm
that solves for the maximum likelihood solution. However,
the most likely parentage vector assumes that Pr(Par | X) is
symmetrically distributed about this value and will other-
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wise provide biased parentage estimates. The expected
parentage vector represents an average of all possible
vectors weighted by their associated probabilities and
provides unbiased estimates of parentage independent of
the symmetry of the distribution of Pr(Par | X). The
expected parentage vector can be calculated from

Par=k } |
Par

(Pr(Par | X) } Par) dPar; (9)

here k is the normalization constant defined such that
� Pr(Par | X)=1.

Equation (9) can be computationally difficult to
calculate, particularly when there are a large number of
candidate parents that are not excluded. We have there-
fore developed methods that convert the integrand to a
simpler algebraic equation. From (4), we see that the
integrand involves the polynomial (5), a constant Pr(X),
and another function, either Pr(Par) or PrB(Par). If
Pr(Par) or PrB(Par) is a polynomial, then the integrand
is a polynomial in the variables Par1 , ..., ParA and can be
calculated using the results of Theorem 1 in Appendix 2,
which shows how to evaluate the integral for any
monomial. If there are large numbers of offspring and
nonexcluded parents, the polynomials will involve large
numbers of monomials and the computation may be
time-consuming. However, this approach is far more
tractable than the original integral formula in (9).
Furthermore, Monte Carlo simulation approaches (e.g.,
Manly, 1997) may be able to accurately estimate (9)
when it is not possible to evaluate directly. By the
Stone�Weierstrass theorem, the functions Pr(Par) and
PrB(Par) can always be approximated by polynomials to
within any desired precision, so this requirement does
not limit the applicability of the technique.

In the case of two-sex multiple mating and complete
sampling of both sexes, the expected paternity or mater-
nity of individual parents can be calculated by adding all
elements of the expected parentage vector that include
the desired parent.

5. Confidence Intervals

Confidence intervals can be established for the
estimates based on (4). First, generate the probability
distribution of Para given X for Para # [0, 1] from

Pr(Para=* | X)=k } |
Par

Pr(Par | X) dPar, (10)

Neff, Repka, and Gross
Para=*

where k is the normalization constant. Next, determine
the values of Para (denoted below with an asterisk) that



cut off upper and lower ``tails'' of areas 1&:�2 and :�2,
respectively, by solving

k } |
Par*a

Para=0
|

Par
Pr(Par | X) dPara dPar=

:
2

or 1&
:
2

. (11)

As an example, for the 950 confidence interval, : equals
0.05, and (11) is solved for values of Para that cut off the
lower and upper 2.50 of the normalized Pr(Par | X) dis-
tribution. In the case of two-sex multiple mating and
complete sampling of both sexes, the confidence interval
can also be calculated for their individual paternity or
maternity estimates. First, let J be the set containing each
element of the Par vector that includes the putative
parent. The confidence interval for the parent's cumu-
lative success (i.e., with all of its mates in J) is found by
solving

k } | Para
a # J

� Para�Par*

| Parb
b � J

� Parb=1&� Para

_Pr(Par | X) dPar=
:
2

or 1&
:
2

. (12)

Again, when a large number of parents must be con-
sidered the integrand in (11) or (12) can be expressed as
a polynomial for which Theorem 2 in Appendix 2 can be
used to solve each monomial. In the case of (12), the
monomials associated with the inner integral must first
be solved, followed by the outer integral.

ASSUMPTION VIOLATIONS

(a) The Prior Probability Distribution Pr(Par)

To test the effects of assuming that Pr(Par) follows a
uniform distribution, we considered a simple case where
there are two males competing for a female's eggs (the
general results are applicable to any number of males and
females). We assumed that the prior paternity of Male 1
could follow one of seven probability distributions
(Table III). As an example, the uniform distribution
implies that Male 1 is just as likely to have a parentage of
0 or 0.35 or 1 or any other value between 0 and 1. This
could represent a mating system where parentage is ran-
dom. In contrast, the normal distribution implies that

Models for Parentage Analysis
Male 1 is most likely to have a parentage of 0.5 and is
very unlikely to have a parentage of 0 or 1. This distribu-
tion could represent a mating system where there is little
variance in male quality and it is likely that each male
gets close to the same paternity. The seven distributions
cover several general types of mating dynamics that exist in
nature and thus should provide a reasonable description of
the various outcomes possible for distributions of Pr(Par).
Nearly all previous models have assumed the uniform dis-
tribution in their analyses (for an exception see Adams et
al., 1992). First, we considered each of the seven distribu-
tions of Pr(Par) and examined their individual effects of
assuming that it follows one of the other six distributions.
We calculated the bias (accuracy) and variance (precision)
in the parentage estimates [as calculated from (9)]
resulting from the assumption. Ideally, both should be
minimized. The bias was calculated from

bias=|
1

Par1=0
( |Pract(Par1)&Prest(Par1)| )

_Pract(Par1) dPar1 , (13)

where Pract(Par1) and Prest(Par1) represent the actual
and estimated distribution of Pr(Par1), respectively. The
variance was calculated from

variance=|
1

Par1=0
(Pract(Par1)&Prest(Par1))2

_Pract(Par1) dPar1 . (14)

Table IV summarizes the average bias and variance
introduced for each combination of distributions. When
the correct distribution of Pr(Par) was used, the bias and
variance were both zero. Overall, the uniform distribu-
tion performed the best, minimizing both the bias and the
variance, and the normal distribution performed the least
well. Although in each case the uniform distribution was
not the best alternative to the actual distribution, unlike
the other distributions, it performed nearly as well as the
best alternative for every distribution and was therefore
the most robust. Generally, in the absence of any infor-
mation on the distribution of Pr(Par), the uniform dis-
tribution is the best a priori assumption. However, if the
actual distribution of Pr(Par) is not uniform, then this
assumption will generate biased parentage inference
(also see below). If additional biological data are
available that can reliably estimate the distribution of
Pr(Par), it should be used to provide more accurate
parentage inferences.
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(b) Variance in Reproductive Success

To test the effects of calculating the most likely versus
expected parentage vector and assuming a uniform prior
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TABLE III

Summary of the Functions Used to Examine the Effects of Estimating Pr

Function

Graph Name Equation

Uniform f (x)=1

Normal f (x)=2.4_e

Inverted normal f (x)=1.715_

Increasing linear f (x)=2x

Decreasing linear f (x)=2&2x

Skewed right f (x)=1.625_

Skewed left f (x)=1.625_

Note. The graphs plot Pr(Par) versus Par1 (over 0, 1). Each function

TABLE IV

Summary of the Effects of Assuming that Pr(Par) Follows one of Seven D

Inverted
Uniform Normal normal

Uniform 0.0(0.0) 0.75(0.70) 0.48(0.27
Normal 0.86(0.93) 0.0(0.0) 1.2(1.6)
Inverted normal 0.54(0.36) 1.5(2.7) 0.0(0.0)
Increasing 0.50(0.33) 1.1(1.5) 0.70(0.77
Decreasing 0.50(0.33) 1.1(1.5) 0.70(0.77
Skewed right 0.44(0.23) 0.87(0.93) 0.73(0.81
Skewed left 0.44(0.23) 0.87(0.93) 0.73(0.81

Total 3.3(2.4) 6.2(8.3) 4.5(5.0)
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Note. The net bias is presented with the variance in parentheses. The tota
distribution had the least bias and variance. The actual distribution Pract(Par
across the top. See Table III for a description of the distributions.
r) without Biological Data

Biological description

Any parentage equally likely

8_(x&0.5)2) Equal parentage most likely;
all or no parentage highly unlikely

&e(&18_(x&0.5)2)) All or no parentage most likely;
equal parentage highly unlikely

All parentage most likely;
no parentage highly unlikely

No parentage most likely;
all parentage highly unlikely

&5_(x&0.25)2) Low parentage most likely;
all parentage highly unlikely

&5_(x&0.75)2) High parentage most likely;
no parentage highly unlikely

graphed and its name, equation, and biological description are given.

ibutions

Skewed Skewed
Increasing Decreasing right left

0.50(0.33) 0.50(0.33) 0.48(0.28) 0.48(0.28)
0.91(1.0) 0.91(1.0) 0.81(0.81) 0.81(0.81)

0.50(0.37) 0.50(0.37) 0.65(0.60) 0.65(0.60)
0.0(0.0) 1.7(2.3) 1.0(1.3) 0.23(0.09)
1.7(2.3) 0.0(0.0) 0.23(0.09) 1.0(1.3)

0.89(0.95) 0.21(0.07) 0.0(0.0) 0.90(0.95)
0.21(0.07) 0.89(0.95) 0.90(0.95) 0.0(0.0)

4.7(5.0) 4.7(5.0) 4.1(4.0) 4.1(4.0)

Neff, Repka, and Gross
l indicates the sum of the values within the column. Overall, the uniform
) is presented down the left side and the estimated distribution Prest(Par)
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probability distribution on the variance in reproductive
success we performed the following simulation. We
modeled pairs of individuals, a dominant and a subor-
dinate, that compete for a set of 10 or 20 offspring. To
introduce a skew in reproductive success we assumed
that the paternity of a dominant followed the prior prob-
ability distribution of Pr(Par1)=2_Par1 . Therefore, on
average a dominant fertilizes two-thirds of the offspring,
but in any given pair could fertilize more or less. The sub-
ordinate in each pair fertilizes the remaining offspring.
For a given pair, genotypes were generated for each male
and one female based on a single locus with five equally
common alleles. The paternity of the dominant was then
randomly drawn from the prior probability distribution.
Based on the paternity value, each of the offspring was
probabilistically assigned to either the dominant or the
subordinate. When an offspring was assigned to a parent
its genotype was generated from the genetic father and
mother based on Mendelian inheritance. Equations (4)
and (9), with either a uniform or the correct skewed prior
probability distribution, were then used to calculate the
most likely and expected paternity for the dominant and
subordinate. Each estimate was compared to the actual
paternities and the difference (bias) was recorded. The
procedure was repeated for 10,000 pairs.

On average the dominant male fertilized two-thirds
and the subordinate male one-third of the offspring, as
expected based on the prior probability distribution.
However, when a uniform prior probability distribution
was assumed, the paternity estimates were biased
(Table V). The paternity of the dominant was under-
estimated, while the paternity of the subordinate was
overestimated. This resulted in an underestimation of the
true reproductive skew. This bias was lower for the
expected paternity compared to the most likely paternity
and decreased when a larger number of offspring were
analyzed. When the correct prior probability distribution

TABLE V

Effects of a Uniform Prior Probability Distribution and Most Likely vers

Paternity ( 0)
Number

offspring Dominant Subordinate M

10 66.7 33.3

20 66.7 33.3

Models for Parentage Analysis
(4

a Values represent mean paternity ( 0) for the dominant male with varian
b Actual prior probability distribution was Pr(Par1)=2_Par1 (see text).
xpected Vectors on the Accuracy of Parentage Inference

iform prior probabilitya Actual prior probabilitya, b

likely Expected Most likely Expected

.4 61.7 73.9 66.7
.0) (1.8) (2.2) (1.9)
.7 63.0 71.7 66.7

was incorporated into the analysis, the expected pater-
nities were unbiased. Interestingly, the most likely pater-
nity now overestimated the success of the dominant and
therefore overestimated reproductive skew. This bias is
attributed to the skew in the parentage distribution
Pr(Par | X) (also see the biological examples below). It
cannot be attributed to row dependence in the tran-
sitional probability matrix such as when the two males
had equivalent genotypes, since in these cases correct
paternities would be assigned based solely on the
prior probabilities. The bias decreased with increasing
numbers of alleles or loci, but increased with increasing
numbers of candidate parents (data not shown). Overall,
the expected parentage vector provides less biased parent-
age estimates compared to the most likely parentage vec-
tor and provides unbiased estimates when the true prior
probability distribution is known. In this latter case, the
expected parentage vector (Eq. 9) provides unbiased
estimates of the variance in reproductive success and
reproductive skew.

EXAMPLES

To demonstrate the methods we consider three biologi-
cal examples: (1) single-sex multiple mating; (2) two-sex
multiple mating with complete sampling of both sexes; and
(3) two-sex multiple mating with complete sampling of
only one sex. While these examples are based on two fish
species that we study, coho salmon (O. kisutch) and
bluegill sunfish (L. macrochirus), they are meant to
broadly demonstrate the application of the models.

Single-Sex Multiple Mating

In this example males compete for dominance and form
a mating hierarchy, as in the case of many salmonids (e.g.,
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.3) (1.2) (1.7) (1.1)

ce in parentheses.



Fleming and Gross, 1994; Quinn, 1999). Imagine that two
males were observed mating with a single female and
Male 1 obtained the dominant (alpha) mating position in
the hierarchy and Male 2 obtained the subordinate (beta)
position. Ten offspring were later collected from the
female's nest and we wanted to calculate the paternity and
a confidence interval for each male. Genotypes were there-
fore obtained at a single locus for each male, the female,
and the 10 offspring (e.g., Neff et al., 2000c; Table VI). The
dominant male had a positional advantage during mating
and therefore was expected to fertilize a greater proportion
of the eggs (Gross, Neff, and Fleming, in review). Suppose
that the probability distribution of paternity given the
hierarchy position of Male 1 was expected to follow the
following normalized distribution:

PrB(Par1)=2 } Par. (15)

First, we calculated the most likely and expected pater-
nity of the two males based on (4) and (9) and using only
the genetic data, the transitional probabilities for single-
sex multiple mating (e.g., Table I), and assuming that
Pr(Par) followed the uniform distribution. We also
calculated the 950 confidence interval associated with
the paternity estimates using (11).

In this example the parentage vector consists of two
elements Par=(Par1 , Par2=1&Par1) representing
the parentage of Male 1 and Male 2 with the female,

TABLE VI

Summary of the Genetic Data for the Biological Examples

Individual G Xi

Single-sex multiple mating

Female aa ��
Male 1 Aa ��
Male 2 AA ��

Offspring Aa 6
aa 4

Two-sex multiple mating

Female 1 AC ��
Female 2 AB ��
Male 1 AA ��
Male 2 BB ��

Offspring AA 8
AB 4
AC 6
BC 2
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Note. The genotypes (G) are given for the offspring and the
candidate parents. Xi represents the number of offspring with the
corresponding genotype.
respectively. The offspring vector has two elements X=
(6, 4) representing the six Aa and four aa offspring (see
Table VI), and the T matrix is

T= }
1
2

1

1
2

0 }. (16)

The distribution of Pr(Par | X), based only on
the genetic data, over the possible values of Par, is pre-
sented in Fig. 1. Pr(Par | X) is maximized at Par=
(0.8, 0.2) (Fig. 1a). However, since the distribution is not

FIG. 1. Calculation of the paternity and confidence intervals for
Male 1 in the first biological example. Here it assumed that Pr(Par)
follows the uniform distribution. (a) The expected paternity is lower
than the most likely paternity since the distribution of Pr(Par | X) is
skewed. (b) The 950 confidence interval in the paternity estimate is

Neff, Repka, and Gross
calculated by determining the values of Par1 that represent the lower
and upper 2.50 of the area of the Pr(Par | X) distribution. In this
example, the most likely estimate for the paternity of Male 1 is 800

while the expected paternity is 700 with a 950 confidence interval of
31�980.



symmetrically distributed about the most likely value, it
provides a biased estimate of each male's parentage.
Since the distribution is skewed toward lower parentage,
the expected parentage for the first male is less than the
most likely value, and consequently, the parentage for
the second male is more than the most likely value. In
this example, the expected parentage for the two males is
Par=(0.7, 0.3). That is, the expected parentage for
Male 1 is 700 and for Male 2 it is 300.

The 950 confidence interval in the parentage estimate
was also calculated from the distribution of Pr(Par | X)
and is 0.31�0.98 for Male 1 and 0.02�0.69 for Male 2
(Fig. 1B). The confidence interval is not evenly dis-
tributed about the expected or most likely value, again

Models for Parentage Analysis
FIG. 2. Calculation of the paternity and confidence intervals for Male
behavioral data (PrB(Par)) are included in the analysis of parentage, provid
paternity for Male 1 is 750.
since the Pr(Par | X) distribution is asymmetrical about
these values. Since we had only two males in this
example, there is only a single independent parentage
(e.g., the parentage of Male 2 is simply what remains from
Male 1: Par2=1&Par1). Therefore, the most likely or
expected parentages for the two males sum to 1 and
similarly, the upper bound of the confidence interval for
one male and the lower bound of the other male sum to 1.
We arbitrarily chose to display the distribution for Male 1.
Either increasing the number of loci used to genotype the
parents and offspring or increasing the number of offspring
sampled from the female's nest would decrease the con-
fidence interval and therefore increase our certainty in the
parentage estimates (data not shown).
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1 in the first biological example. Here both genetic (Pr(X | Par)) and
ing a more accurate estimate of paternity. In this example the expected



Next, we repeated the analysis including the biological
data (i.e., the behavioral observation of hierarchy posi-
tion; Eq. 15). The distribution of Pr(Par | X), based on
both the genetic and the biological data, over the
possible values of Par is presented in Fig. 2. In this case,
the expected parentage is Par=(0.75, 0.25). The 950
confidence interval for Male 1 is 0.38�0.99 and for Male 2
is 0.01�0.62. Since Male 1 obtained a superior position in
the mating hierarchy his expected paternity increased
compared to the analysis including only the genetic data.
Similarly, since Male 2 obtained an inferior position, his
paternity decreased. Therefore, based only on the genetic
data, the paternity estimates would have been biased.
Furthermore, assuming a uniform prior probability dis-
tribution would have underestimated the true variance in
reproductive success.

Two-Sex Multiple Mating

In this example imagine that males and females both
mate with multiple partners, and the eggs are laid in a
communal nest, such as in many fish (e.g., Gross, 1982)
and birds (e.g., Macedo and Bianchi, 1997). Genotypes
were obtained at a locus for 20 offspring from the nest
and for 2 males and 2 females found in the vicinity of the
nest (Table IV). We wanted to calculate the parentage
and a confidence interval for each of the parent pairs.
Since we had no knowledge of the likely distribution of
Pr(Par) we assumed that it follows a uniform distribution.

First, we calculated the expected parentage of each of
the four parent pairs, as well as their individual paternity
or maternity, based on (4) and (9) and the transitional
probabilities for two-sex multiple mating and complete
sampling of both sexes (e.g., Table II). We also calculated
the 950 confidence interval associated with the par-
entage estimates, as well as the confidence interval
associated with the individual paternity and maternity
estimates.

In this case the parentage vector consists of four
elements Par=(Par1 , Par2 , Par3 , Par4=1&Par1&
Par2&Par3) representing the parentage of Male 1 with
Female 1, Male 1 with Female 2, Male 2 with Female 1,
and Male 2 with Female 2, respectively. The offspring
vector has four elements X=(8, 4, 6, 2) representing the
AA, AB, AC, and BC offspring, respectively (see
Table VI), and the T matrix is

1 0 1 0
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T= }
2
1
2

0
0

1
2
1
2
1
2

2

0
0
0

0
1
2

0
} . (17)
The expected parentage (950 CI) of Male 1 and
Female 1 is 0.54 (0.29�0.73), that of Male 1 and Female 2
is 0.19 (0.01�0.48), that of Male 2 and Female 1 is
0.20 (0.05�0.41), and that of Male 2 and Female 2 is
0.07 (0.00�0.22). Individually, the expected paternity of
Male 1 is 0.73 (0.52�0.94) and that of Male 2 is 0.27
(0.14�0.37). The expected maternity of Female 1 is 0.74
(0.56�0.91) and that of Female 2 is 0.26 (0.10�0.40).

Next, we repeated the analysis assuming that only the
females are collected and calculated the maternity and a
confidence interval for each. In this case, the Par vector
would consist of only two elements Par=(Par1 , Par2

=1&Par1) representing the maternity of Female 1 and
Female 2, respectively. The offspring vector has the same
four elements X=(8, 4, 6, 2), but here the T matrix is

T= }
1
6
1
6

1
6
1
3

1
3
1
6

1
6
1
6 }. (18)

The expected maternity (950 CI) of Female 1 is 0.60
(0.07�0.98) and that of Female 2 is 0.40 (0.02�0.93).
Compared to the previous analysis that included the
genotypes of the putative fathers, the maternity estimates
have a much larger confidence interval and therefore are
considerably less precise.

In these examples for simplicity we have considered
only a single locus with relatively low resolving power
and therefore the confidence intervals are abnormally
large. Generally, we have found that with only a few loci
better estimates are obtained with considerably narrower
confidence intervals (data not shown).

DISCUSSION

In this paper we have developed fractional allocation
models for mating systems with single-sex or two-sex
multiple mating. These models build on fractional alloca-
tion and genetic likelihood theory (Devlin et al., 1988;
Roeder et al., 1989; Smouse and Meagher, 1994) and
allow for both genetic and other biological data to be
utilized in the parentage inference. We have also
developed confidence estimators for our models, thus
enabling the analysis of the precision of the estimates.

Previous fractional allocation models make two
implicit assumptions that can lead to inaccurate parent-
age inferences. First, they assume that parentage is ran-

Neff, Repka, and Gross
dom and therefore the prior probability of parentage is
uniformly distributed. Categorical allocation models
(and many other likelihood models such as individual
(R) and population (Fst) relatedness estimators) make a



similar assumption. We have shown that, in the absence
of additional information to the genetic data, assuming
that the prior probability follows the uniform distribu-
tion is the best a priori assumption as it minimizes both
the bias and the variance in the estimates of fertilization
success (also see Devlin et al., 1998). However, this
assumption can lead to biased estimates and particularly
underestimates the variance in reproductive success. In
turn, this can result in underestimates of, for example,
reproductive skew, selection coefficients, and the effective
size of populations. We have therefore developed a model
based on the framework of Adams et al. (1992) that
incorporates other biological data, for example,
behavioral observations during mating, to estimate the
prior probability distribution and thereby provide more
accurate parentage inference.

Second, previous fractional allocation models assume
that the probability of parentage based on the genetic
data [Pr(Par | X)] is symmetrically distributed about
the most likely parentage. However, for most cases in
nature this distribution will be skewed (e.g., see the
biological examples above), and therefore the most likely
value provides a biased estimate of the expected parent-
age. In contrast to the first assumption, the most likely
parentage will generally overestimate major contributors
and underestimate minor contributors. This can lead to
an overestimate of the variance in reproductive success.
The model that we have developed to calculate the
expected parentage, in conjunction with the correct prior
probability distribution, can provide unbiased parentage
inference.

Assessing the statistical confidence in parentage
estimates is an important component of parentage
analyses (e.g., Pena and Chakraborty, 1994; Evett and
Weir, 1998; Marshall et al., 1998). While confidence
estimators in parentage assignments for categorical
allocation models are available through a simulation
method developed by Marshall et al. (1998), no such
methods have previously been developed for fractional
allocation models. Our statistics calculate the confidence
interval for an individual's parentage expressed as a
proportion. For example, an individual's expected par-
entage may be 750 with a 950 confidence interval
of 70�800 These statistics now make it possible to
calculate statistical confidence in parentage estimates
based on fractional allocation models.

Roeder et al. (1989) show that modeling parentage
based on a set of offspring simultaneously can provide
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more accurate inference compared to examining indi-
vidual offspring. This approach assumes that the parentage
of one offspring is related to the parentage of other offspring
in the sample. Thus, it is useful to identify the correct
level of analysis with respect to the offspring sample. For
example, consider the mating system of the bluegill sun-
fish. Parental male bluegill make nests in a colony
and spawn with multiple females, during which time
specialized cuckolder males sneak fertilizations (Gross,
1982). Females may spawn eggs in multiple nests and
cuckolders may intrude in multiple nests. Thus, while a
parental male's fertility is limited to his own nest, a cuck-
older's and female's may be distributed in multiple nests
throughout the colony. As such, the best level of analysis
may be to model the entire colony (i.e., to consider the
offspring from every nest in the colony simultaneously)
as opposed to individual nests or individual offspring. At
the colony level, the prior probability distribution may
be less skewed and easier to estimate, thus providing
more accurate and precise parentage inference. The
specific effects of the level of analysis on parentage
inference are likely to be complex and are beyond the
scope of this paper, but could provide additional insights
worth investigating.

It has been proposed that categorical allocation has
the advantage of identifying parent�offspring links,
which can be useful when calculating, for example,
narrow sense heritability (e.g., Marshall et al., 1998). The
fractional allocation models developed here can also
identify the most likely parent for individual offspring. In
this case, the analysis is performed using only a single
focal offspring (also see Devlin et al., 1988) and the most
likely parent is identified as having the highest expected
parentage. The expected parentage also reflects the con-
fidence in the assignment and should be similar to the
categorical confidence statistic developed by Marshall et
al. (1998). Our model has the added advantage of includ-
ing alternatives to the uniform distribution for the prior
probability of parentage, but does not consider incom-
plete sampling of candidate parents or genotyping errors
as does the model of Marshall et al. The confidence inter-
val provided by our model can also be used to determine
whether the most likely parent is significantly more likely
than another parent, for example, if the 950 confidence
intervals do not overlap. This interval reflects the cer-
tainty in the confidence estimate and is similar to power
in other statistics (e.g., see Zar, 1999).

To demonstrate the application of our fractional
allocation model to the assignment of an individual off-
spring to a single parent, consider the following example.
Suppose that we assign an offspring among three
putative fathers and the expected parentage vector is
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Par=(0.80, 0.20, 0). Since only a single offspring is in the
analysis, the parentage values represent the probability
of paternity for each of the three males. Therefore, in this
example the first male is the most likely father of the



offspring. Further, he is four times more likely to be the
father than the second male. The third male must have
been excluded by the genetic data (Par3=0) and there-
fore it is not possible that he is the father of the offspring.
Suppose that the 950 confidence intervals associated
with the first two males' paternities are 0.70�0.90 and
0.15�0.25, respectively. Since the distributions do not
overlap, we can conclude that the first male is
significantly more likely than the second male to be the
genetic father of the offspring. Although it may be
desirable to identify parent�offspring relationships in this
manner, if applied repeatedly to several offspring, it will
lead to inaccurate parentage inferences similarly to
categorical allocation models (Devlin et al., 1988).

In many cases it is unnecessary to identify parent�
offspring relationships. As an example, suppose that we
were interested in determining the heritability of a trait
based on several offspring and a set of candidate parents
that we had collected. Conventionally, once the parent�
offspring relationships are established a regression is
performed on the trait values of the offspring and parents
(e.g., Falconer, 1989). However, given that fractional
allocation probabilistically assigns offspring among
putative parents and does not identify a single parent, an
index must be calculated for the parent trait value. This
value can be calculated simply from the average of the
trait values from each nonexcluded parent weighted by
their probability of parentage. For example, given two
nonexcluded putative parents with probabilities of
parentage of 0.80 and 0.20, the trait value would be
calculated as 800 of the first male's plus 200 of the
second male's. This indexed trait value could then be
used in the conventional regression and should provide a
more accurate calculation of heritability.

Complete sampling of both sexes in mating systems
with two-sex multiple mating provides considerably
more precise estimates of parentage. We presented
biological examples for two sampling scenarios of two-
sex multiple mating: complete sampling of both sexes
and complete sampling of only one sex. The fractional
allocation model provides equally accurate estimates of
parentage under both of these scenarios. That is, whether
both sexes or only one sex have been completely sam-
pled, the estimates are equally unbiased. However,
including genetic data from both sexes increases the
precision of the estimates. Researchers may wish to con-
sider the tradeoff between sampling requirements, such
as complete sampling of both sexes, or increasing the
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number of loci, when determining the optimal approach
to a desired level of confidence.

Traditionally, genetic data have been used to con-
firm or refute mating system dynamics inferred from
behavioral observations (e.g., Gibbs et al., 1990; Philipp
and Gross, 1994; Petrie and Kempenaers, 1998).
However, both genetic and other biological data can be
informative and often complement one another (e.g.,
Adams et al., 1992; Philipp and Gross, 1994; but see
Coltman et al., 1999). Our model, which incorporates
both biological and genetic data into the fractional
allocation of offspring, utilizes a greater amount of
potentially available data and therefore increases the
accuracy and efficiency of parentage analyses. Finally, we
have also developed formulas to calculate the genetic
likelihood [Pr(X | Par)] when only some of the
candidate parents have been sampled (Neff et al., 2000b).
These latter formulas can be incorporated into the
current Bayesian models. Thus, the models presented
here could provide a general framework for parentage
analysis.

APPENDIX 1

Here we present an iterative algorithm that solves for
the most likely parentage vector, based on the approach
outlined in Smouse and Meagher (1994).

First, set each element of the parentage vector Par
equal: Par=(A&1, ..., A&1). Next, use the following
equation to calculate new values for each element of Par,

Pari+1
a = :

C

c=1
\Par i

a } Pr(Par i
a) } Tac

2c
}
Xc

N + ,

where

2c=7A
a=1 (Par i

a } Pr(Par i
a) } Tac).

Iterate by incrementing i by 1 and recalculating each
element of Par. Repeat this process until the values of Par
converge (i.e., when Pari+1=Pari). Provided that the T
matrix is of maximal rank, the converged values of Par
(denoted below by an asterisk) will provide a global
maximum for Pr(Par | X) (see Smouse and Meagher,
1994 and references within). From these values the pater-
nity and maternity for each father and mother in the
respective sets F and M can be calculated from

Neff, Repka, and Gross
Patf = :
a # f

Para*;

Matm= :
a # m

Para*.



APPENDIX 2

Here we derive two theorems that convert a monomial
integrand to an algebraic equation. The first theorem is
used to solve (9) and the second theorem to solve (11) or
(12). Here, for clarity, we use pi to represent the elements
of Par (i.e., pi=Pari).

Let 2n be the (n&1)-dimensional set

2n={( p1 , p2 , ..., pn): p i�0, for all i, :
n

i=1

pi=1= .

Theorem 1. If x1 , ..., xn are nonnegative integers,
then

|| } } } |
2n

px1
1 px2

2 } } } pxn
n dp1 dp2 } } } dpn&1

=
x1 ! x2 ! } } } xn!

(x1+x2+ } } } +xn+n&1)!
.

Proof. First, when n=2,

|
22

pxq y dp=|
1

0
px(1& p) y dp.

Using integration by parts, with u= px, v$=(1& p) y, we
find this equals

&\ 1
y+1

px(1& p) y+1+}
1

0

+
x

y+1 |
1

0
px&1 (1& p) y+1 dp

=
x

y+1 |
1

0
px&1 (1& p) y+1 dp.

By induction, we find that

|
1

0
px(1& p) y dp

=
x(x&1)(x&2) } } } 1

( y+1)( y+2) } } } (x+ y) |
1

0
(1& p)x+ y dp
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=
x ! y!

(x+ y+1)!
,

as required.
The general case is proved by induction on n; assuming
the result is known for lower dimensions, write

|| } } } |
2n

px1
1 px2

2 } } } pxn
n dp1 dp2 } } } dpn&1

=|
1

0
|

1& p1

0
} } } |

1& p1& } } } & pn&2

0
px1

1 px2
2 } } } pxn&1

n&1

_(1& p1& } } } & pn&1)xn dp1 dp2 } } } dpn&1

=|
1

0
|

1& p1

0
} } } |

1& p1& } } } & pn&2

0
px1

1 px2
2 } } } pxn&1

n&1

_(1& p1& } } } & pn&2)xn

_\1&
pn&1

1& p1& } } } & pn&2+
xn

_dp1 dp2 } } } dpn&1 .

Making a change of variables, taking pn&1 to
pn&1

1& p1& } } } & pn&2
, we get

|
1

0
|

1& p1

0
} } } |

1& p1& } } } & pn&3

0
|

1

0
px1

1 px2
2 } } } pxn&1

n&1

_(1& p1& } } } & pn&2)xn+xn&1+1

_(1& pn&1)xn dp1 dp2 } } } dpn&1

=|| } } } |
2n&1

px1
1 px2

2 } } } pxn&2
n&2

_(1& p1& } } } & pn&2)xn&1+xn+1

_dp1 dp2 } } } dpn&2

_|
1

0
pxn&1

n&1
(1& pn&1)xn dpn&1 .

The last integral can be evaluated using the result from
above for n=2 and the previous one by the induction
hypothesis. The result is

x1 ! x2 ! } } } xn&2 ! (xn+xn&1+1)!
(x1+x2+ } } } +xn&1+xn+1+(n&1)&1)!

_
xn&1 ! xn !

(xn&1+xn+1)!
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=
x1 ! x2! } } } xn&2! (xn+xn&1+1)!

(x1+x2+ } } } +xn&1+xn+n&1)!
,

as required.



It will also be necessary to evaluate the integral with
one coordinate held constant. If 1�k�n, 0�c�1, let

2k
n&1 (c)={( p1 , p2 , ..., pn): pk=c, pi�0, for all i,

and :
n

i=1

pi=1= .

Theorem 2. If x1 , ..., xn are nonnegative integers,
then

|| } } } |
2k

n&1(c)
px1

1 px2
2 } } } pxn

n dp1 dp2 } } }

_dpk&1 dpk+1 } } } dpn&1

=cxk (1&c)x1+x2+ } } } +xk&1+xk+1+ } } } +xn+n&2

_
x1 ! x2 ! } } } xk&1! xk+1 ! } } } xn !

(x1+x2+ } } } +xk&1

+xk+1+ } } } +xn+n&2)!

.

Proof. First note that

|| } } } |
2k

n&1(c)
px1

1 px2
2 } } } pxn

n dp1 dp2 } } }

_dpk&1 dpk+1 } } } dpn&1

=cxk || } } } |
2 k

n&1(1&c)
px1

1 px2
2 } } } pxk&1

k&1
pxk+1

k+1
} } }

_pxn
n dp1 dp2 } } } dpk&1 dpk+1 } } } dpn&1 .

A change of variables pi [ (1 & c) q i transforms
the integral over ( p1 , p2 , ..., pk&1 , c, pk+1 , ..., pn) #
2k

n&1 (1&c) into an integral over (q1 , q2 , ..., qk&1 ,
qk+1 , ..., qn) # 2n&1 . The integral becomes

cxk || } } } |
2n&1

((1&c) q1)x1 ((1&c) q2)x2 } } }

_((1&c) qk&1)xk&1 ((1&c) qk+1)xk+1 } } }

_((1&c) qn)xn (1&c)n&2 dq1 dq2 } } } dqk&1

_dqk+1 } } } dqn&1

=cxk (1&c)x1+x2+ } } } +xk&1+xk+1+ } } } +xn+n&2
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_|| } } } |
2n&1

qx1
1 qx2

2 } } } qxk&1
k&1

qxk+1
k+1

} } } qxn
n

_dq1 dq2 } } } dqk&1 dqk+1 } } } dqn&1 .
This last integral can be evaluated using Theorem 1 with
n&1 in place of n, giving

cxk (1&c)x1+x2+ } } } +xk&1+xk+1+ } } } +xn+n&2

_
x1 ! x2 ! } } } xk&1 ! xk+1 ! } } } xn!

(x1+x2+ } } } +xk&1

+xk+1+ } } } +xn+n&2)!

,

as required.

ACKNOWLEDGMENTS

We thank two anonymous reviewers for their helpful comments. This
work was supported by the NSERC of Canada.

REFERENCES

Adams, W. T., Griffin, A. R., and Moran, G. F. 1992. Using paternity
analysis to measure effective pollen dispersal in plant populations,
Am. Nat. 140, 762�780.

Avise, J. C. 1994. ``Molecular Markers, Natural History and Evolu-
tion,'' Chapman 6 Hall, New York.

Burczyk, J., Adams, W. T., and Shimizu, J. Y. 1996. Mating patterns
and pollen dispersal in a natural knobcone pine (Pinus attenuata
Lemmon.) stand, Heredity 77, 251�260.

Chakraborty, R., Meagher, T. R., and Smouse, P. E. 1988. Parentage
analysis with genetic markers in natural populations. I. The expected
proportion of offspring with unambiguous paternity, Genetics 118,
527�536.

Coltman, D. W., Bancroft, D. R., Robertson, A., Smith, J. A., Clutton-
Brock, T. H., and Pemberton, J. M. 1999. Male reproductive success
in a promiscuous mammal: Behavioural estimates compared with
genetic paternity, Mol. Ecol. 8, 1199�1209.

Devlin, D., Roeder, K., and Ellstrand, N. C. 1988. Fractional paternity
assignment: Theoretical development and comparison to other
methods, Theor. Appl. Genet. 76, 369�380.

Ellstrand, N. C. 1984. Multiple paternity within the fruits of the wild
radish, Raphanus sativus. Am. Nat. 126, 606�612.

Evett, I. W., and Weir, B. S. 1998. ``Interpreting DNA Evidence,''
Sinauer, Sunderland, MA.

Falconer, D. S. 1989. ``An Introduction to Quantitative Genetics,''
3rd ed., Longman and Wiley, New York.

Fleming, I. A., and Gross, M. R. 1994. Breeding competition in a Pacific
salmon (Coho: Oncorhynchus kisutch): Measures of natural and
sexual selection, Evolution 48, 637�657.

Gibbs, H. L., Weatherhead, P. J., Boag, P. T., White, B. N., Tabak,
L. M. and Hoysak, D. J. 1990. Realized reproductive success of
polygynous red-winged blackbirds revealed by DNA markers,
Science 250, 1394�1397.

Neff, Repka, and Gross
Gross, M. R. 1982. Sneakers, satellites and parentals: Polymorphic
mating strategies in North American sunfishes, Z. Tierpsychol. 60,
1�26.

Jarne, P., and Lagoda, J. L. P. 1996. Microsatellites, from molecules to
populations and back, Trends Ecol. Evol. 8, 285�288.



Krebs, J. R., and Davies, N. B. (Eds.) 1997. ``Behavioural Ecology: An
Evolutionary Approach,'' 4th ed., Blackwell Sci., Oxford.

Luikart, G., and England, P. R. 1999. Statistical analysis of micro-
satellite DNA data, Trends Ecol. Evol. 14, 253�256.

Macedo, R. H., and Bianchi, C. A. 1997. Communal breeding in tropi-
cal Guira Cuckoos Guira guira: Sociality in the absence of a
saturated habitat, J. Avian Biol. 28, 207�215.

Manly, B. F. J. 1997. ``Randomization, Bootstrapping and Monte Carlo
Methods in Biology,'' Chapman 6 Hall, New York.

Marshall, T. C., Slate, J., Kruuk, L. E. B., and Pemberton, J. M. 1998.
Statistical confidence for likelihood-based paternity inference in
natural populations, Mol. Ecol. 7, 639�655.

Meagher, T. R. 1986. Analysis of paternity within a natural population
of Chamaelirium luteum. I. Identification of most likely male parents,
Am. Nat. 128, 199�215.

Meagher, T. R., and Thompson, E. 1986. The relationship between
single parent and parent pair genetic likelihoods in genealogy
reconstruction, Theor. Popul. Biol. 29, 87�106.

Meagher, T. R., and Thompson, E. 1987. Analysis of parentage for
naturally established seedlings of Chamaelirium luteum (Liliaceae),
Ecology 68, 803�812.

Neff, B. D., Repka, J., and Gross, M. R. 2000a. Parentage analysis with
incomplete sampling of candidate parents and offspring, Mol. Ecol.
9, 515�528.

Neff, B. D., Repka, J., and Gross, M. R. 2000b. Statistical confidence in
parentage analysis with incomplete sampling: How many loci and
offspring are needed?, Mol. Ecol. 9, 529�539.

Neff, B. D., Fu, P., and Gross, M. R. 2000c. Microsatellite multiplexing
in fish, Trans. Am. Fish. Soc. 129, 584�593.

Pena, S. D. J., and Chakraborty, R. 1994. Paternity testing in the DNA
era, Trends Genet. 10, 204�209.

Petrie, M., and Kempenaers, B. 1998. Extra-pair paternity in birds:
Explaining variation between species and populations, Trends Ecol.
Evol. 13, 52�58.

Models for Parentage Analysis
Philipp, D. P., and Gross, M. R. 1994. Genetic evidence of cuckoldry in
bluegill, Lepomis macrochirus. Mol. Ecol. 3, 563�569.

Prodo� hl, P. A., Loughry, W. J., McDonough, C. M., Nelson, W. S.,
Thompson, E. A., and Avise, J. C. 1998. Genetic maternity
and paternity in a local population of Armadillos assessed
by microsatellite DNA markers and field data, Am. Nat. 151,
7�19.

Queller, D. C., Strassmann, J. E., and Hughes, C. R. 1993. Micro-
satellites and kinship, Trends Ecol. Evol. 8, 285�288.

Quinn, T. P. 1999. Variation in Pacific salmon reproductive behaviour
associated with species, sex and levels of competition, Behaviour 136,
179�204.

Reynolds, J. D. 1996. Animal breeding systems, Trends Ecol. Evol. 11,
68�72.

Roeder, K., Devlin, B., and Lindsay, B. G. 1989. Applications of
maximum likelihood methods to population genetic data for the
estimation of individual fertilities, Biometrics 45, 363�379.

Schoen, D. J., and Stewart, S. C. 1986. Variation in male reproductive
investment and male reproductive success in white spruce, Evolution
40, 1109�1120.

Smouse, P. E., and Meagher, T. R. 1994. Genetic analysis of male
reproductive contributions in Chamaelirium luteum (L.) Gray
(Liliaceae), Genetics 136, 313�322.

Smouse, P. E., Meagher, T. R., and Kobak, C. J. 1999. Parentage
analysis in Chamaelirium luteum (L.) Gray (Liliaceae): Why do
some males have higher reproductive contributions?, J. Evol. Biol.
12, 1069�1077.

Sunnucks, P. 2000. Efficient genetic markers for population biology,
Trends Ecol. Evol. 15, 199�203.

Thompson, E. A., and Meagher, T. R. 1998. Genetic linkage in the
estimation of pairwise relationship, Theor. Appl. Genet. 97, 857�
864.

Zar, J. H. 1999. ``Biostatistical Analysis,'' 4th ed., Prentice�Hall, Simon
6 Schuster, Upper Saddle River, NJ.

331


	INTRODUCTION 
	THE MODELS 
	TABLE I 
	TABLE II 

	ASSUMPTION VIOLATIONS 
	TABLE III 
	TABLE IV 
	TABLE V 

	EXAMPLES 
	TABLE VI 
	FIG. 1 
	FIG. 2 

	DISCUSSION 
	APPENDIX 1 
	APPENDIX 2 
	ACKNOWLEDGMENTS 
	REFERENCES 

