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Abstract

We have recently presented models to estimate parentage in breeding systems with multiple
mating and incomplete sampling of the candidate parents. Here we provide formulas to
calculate the statistical confidence and the optimal trade-off between the number of loci
and offspring. These calculations allow an understanding of the statistical significance of
the parentage estimates as well as the appropriate sampling regime required to obtain a
desired level of confidence. We show that the trade-off generally depends on the parent-
age of the putative parents. When parentage is low, sampling effort should concentrate on
increasing the number of loci. Otherwise, there are similar benefits from increasing the
number of loci or offspring. We demonstrate these methods using genetic data from a nest
of the bluegill sunfish (

 

Lepomis macrochirus

 

).
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Introduction

 

Parentage models are necessary to assess reproductive
success, kinship and fitness of wild populations (Avise
1994; Jarne & Lagoda 1996; Petrie & Kempenaers 1998).
Statistical confidence is an important parameter in
parentage models because it reveals the accuracy of the
estimates and thus the reliability of parentage inference
(e.g. Pena & Chakraborty 1994; Evett & Weir 1998).
Studies addressing statistical confidence in parentage
estimates have focused on models that assume complete
sampling of candidate parents and assign an offspring to
the most-likely parent or parent pair (e.g. Chakraborty

 

et al

 

. 1974; Meagher 1986; Thompson 1986; Thompson &
Meagher 1987; Evett & Weir 1998). Statistical confidence
in the assignment of an offspring reflects the probability
of correctly identifying the genetic parents, and generally
increases as the number of loci increases and the number
of candidate parents decreases (Chakraborty 

 

et al

 

. 1988;
Double 

 

et al

 

. 1997; Estoup 

 

et al

 

. 1998; Marshall 

 

et al

 

. 1998).
Statistical confidence estimators for parentage models
that do not require the complete sampling of candidate
parents are less available and are therefore necessary.

We have recently developed models for calculating the
parentage of individuals in breeding systems with single-sex
or two-sex multiple mating and when there is incomplete
sampling of the candidate parents (Neff 

 

et al

 

. 2000). Our
models only require genetic data from the parent or parents
in question, a sample of the next-generation individuals
(NGIs) and an estimate of the breeding-population allele
frequencies. They estimate the proportion of NGIs that
are fathered or mothered by a putative parent. The models
have been shown to provide unbiased estimates, accom-
modate loci with many alleles and be robust to violations
of their assumptions. This makes the models particularly
useful for providing parentage estimates when large sample
sizes are analysed and when genetic data are available
from only some of the candidate parents. We now provide
an approach to calculate the statistical confidence associ-
ated with the parentage estimates.

Parentage analysis involving large numbers of NGIs
must consider the number of NGIs to sample in addition to
the number of loci. Increasing either will generally increase
the confidence in the parentage estimates. This reflects
a trade-off in the total number of genotypes that are
analysed. Most laboratories would like to maximize their
productivity by optimizing the trade-off between the
number of NGIs and the number of loci. We therefore
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show how our statistical confidence calculations can be
used to determine the optimal number of NGIs and loci for
sampling.

We begin by developing formulas for calculating statis-
tical confidence for the models of Neff 

 

et al

 

. (2000). We
show how these formulas can be applied to determine the
optimal number of NGIs and loci to sample to achieve a
desired level of confidence. We also show their optimal
trade-off to minimize the number of genotypes. Finally,
we demonstrate the application of the formulas using
genetic data from a nest of the bluegill sunfish (

 

Lepomis
macrochirus

 

). Bluegill sunfish have males that build nests
and provide parental care and an alternative cuckolder
life history that specializes at stealing fertilizations with
the multiple females that may spawn in a nest.

 

Materials and methods

 

Statistical confidence

 

In Appendix I we derive the formulas for calculating
statistical confidence in the models of Neff 

 

et al

 

. (2000).
Briefly, the variance in a parentage estimate is dependent
on the frequency of the putative parent’s genotype within
the breeding population and the variance in the observed
proportion of the NGIs that are genetically compatible
with the putative parent or parents (i.e. 

 

ng

 

dad

 

, 

 

ng

 

mom

 

, or

 

ng

 

pair

 

; see Neff 

 

et al

 

. 2000). This latter variance has two
components. First, sampling error is introduced if not
all of the NGIs are analysed. Second, there is variance
from Mendelian inheritance, which follows the binomial
distribution.

The confidence formulas require five parameters: (i) the
number of NGIs sampled; (ii) the total number of NGIs
(e.g. total size of a brood); (iii) the population frequency
of the putative parent’s or parents’ alleles; (iv) the pater-
nity, maternity, or parentage of the putative parent or
parents; and (v) the effective number of breeders (other
than the putative parent or parents) contributing genetically
to the NGIs. The ‘effective number’ is the total number
reduced by the variance in their success and is analogous
to 

 

N

 

e

 

 in population genetics (e.g. Kimura 1983). Gener-
ally, several of these parameters will be unknown and
must therefore be estimated. We compare estimation
methods in the Discussion. The confidence formulas can
also be used to calculate the 95% confidence interval (CI)
(see Appendix I). The CI is useful because the variance
may be asymmetrically distributed around the estimate.

In Appendix II we derive formulas for calculating the
expected values of 

 

NG

 

dad

 

 or 

 

NG

 

mom

 

, 

 

NG

 

pair

 

, and  or
. The ability of the models to make precise estim-

ates is dependent on the values of these parameters,
which are influenced by the number of loci and their
polymorphism (the number of alleles).

 

How many loci and offspring?

 

The number of loci and the number of NGIs are typically
the only two parameters of the five that can be manipulated
in the confidence formulas (see the Discussion). Their
product determines the total number of genotypes that
are analysed (total genotypes = number of loci 

 

×

 

 number
of NGIs). We use the Two-Sex Paternity model as an
example of how to optimize the trade-off between these
two parameters and minimize genotype number (the
method is applicable to all of the parentage models). In
the example, we assume that six males have contributed
to fertilization of the brood. The putative father has a
paternity of 80% and the remaining 20% are divided
equally among the five additional fathers. We also assume
that there are a total of five females, each contributing
equally (20%). Thus, the brood includes genes from 11 parents
that may have mated in all possible combinations of male
and female pairs (

 

n

 

 = 30 possible combinations). Using
eqn A1.2 (Appendix I), the total variance in paternity is
expressed as a function of both the putative father’s
genotypic frequency in the population (

 

NG

 

dad

 

; e.g. range
= 0–0.5) and the number of NGIs analysed (e.g. 30 or 50).
From these relationships we determine the combinations of
the number of loci (as measured by 

 

NG

 

dad

 

) and the number
of NGIs that provide a desired variance or level of
confidence. The optimal trade-off between these two
numbers is then determined by the values that minimize
the total number of genotypes (see the Results).

 

Biological example

 

The Two-Sex Paternity model was applied to genetic data
to estimate the paternity of a parental male bluegill (Neff

 

et al

 

. 2000). Seven estimates of paternity were made,
based on three microsatellite loci individually (

 

n

 

 = 3), in
pairs (

 

n

 

 = 3) and all combined (

 

n

 

 = 1). We then calculated
the confidence associated with these estimates.

First, we assumed the paternity estimate that was
based on all three loci to be the actual paternity of the
putative father (83.6%; see Table 1). This estimate should
be the most precise because it is based on the greatest
amount of genetic information. Second, as the number of
NGIs within the putative father’s nest was much greater
than in our sample, we used the binomial approximation
to calculate the sampling error (see Appendix I). Third, as
we did not know the effective number of breeders con-
tributing genetically to the NGIs, we considered three
possibilities: (i) only one genetic mother and one genetic
cuckolder father; (ii) a minimum number of mothers and
cuckolder fathers based on the genetic data; and (iii) the
average population ratios of breeding females and cuck-
older males to parental males. By assuming one genetic
mother and cuckolder father we set the weakest level of

NGpair
mepf

NGpair
depf
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confidence in the paternity estimate because confidence
decreases with fewer breeders (see the Results). The geno-
types of the 46 NGIs at the three loci require a minimum
of two maternal genotypes (see Table 5 from Neff 

 

et al

 

.
2000; e.g. Mother 1: 98/102; 217/227; 128/152; and
Mother 2: 98/102; 211/231; 128/152 at Lma102, 120 and
87, respectively) and one cuckolder genotype in addition
to the parental male (e.g. Cuckolder 1: 98/102; 231/245;
118/128 at Lma102, 120 and 87, respectively). The effective
number of parents may be more than the minimum numbers
because the parents may have similar or identical geno-
types and may therefore be undetectable. Furthermore,
the sample of NGIs may not contain offspring from all the
genetic parents (the absolute maximum number of parents
would be a different parent for each NGI). In both these
cases, the minimum number of parents would be a con-
servative estimate. Alternatively, the effective number of
parents may be less than the minimum numbers when
reproductive success among the parents is highly skewed (the
absolute minimum would approach one genetic mother
and one genetic cuckolder father). In this instance, the
minimum number of parents would overestimate the
effective number. The average ratios of breeders allowed
us to calculate the expected level of confidence based on
biological data for the population at large, and should
provide the most accurate estimate of confidence because
it reflects a probable number of females and cuckolder
males to spawn in the putative father’s nest. However, if
their reproductive success is highly skewed then it can
overestimate the effective number of breeders.

We also calculated the 95% CI in the paternity estimate
based on the three possibilities for the effective number of
breeders. We used eqn A1.29 (Appendix I) to generate

a distribution of the probability of observing 

 

ng

 

dad

 

 (the
observed proportion of offspring that are compatible with
the putative father) given the putative father’s genotype,
over the range of possible 

 

Pat

 

 values (range = 0–1). The
distribution was normalized and the 95% CI was numeric-
ally calculated from the areas under the curve represent-
ing 2.5 and 97.5%.

 

Results

 

Statistical confidence

 

Four factors influence the variance, and hence confid-
ence, in the estimates made by the parentage models
of Neff 

 

et al

 

. (2000). We present detailed results for the
Two-Sex Paternity model (the relationships are similar for
all the models). First, the frequency of the putative
parent’s genotype within the breeding population, as
measured by the 

 

NG

 

 parameters, directly influences the
variance (Fig. 1a,b,c). 

 

NG

 

 increases as the number of loci
and their degree of polymorphism decreases. As 

 

NG

 

increases, the variance in the estimate also increases. The
effect of a small change in 

 

NG

 

 is greatest when it is
large, when few NGIs are analysed, and when the
putative parent’s fertilization success is low. At an 

 

NG

 

value of 0, the putative parent’s offspring could be
unambiguously identified and only sampling error
introduces variance into the estimate. Second, as the
number of NGIs in a sample increases, the variance
decreases (Fig. 1a). This is largely a result of reduced
sampling error. The effect of a small change in the number
of NGIs is greatest when only a few are sampled and
when 

 

NG

 

 is large. Third, as the proportion of NGIs that

Table 1 The paternity results for the parental male bluegill

Loci NGdad ngdad (%) Pat (%)

Variance (%)

1 /, 1 P?, 1 C? 2 /, 1 P?, 1 C? 4 /, 1 P?, 6 C?

Single
Lma102 0.551 89.1 (41/46) 75.8 2.2 1.8 1.0
Lma120 0.563 91.3 (42/46) 80.1 2.3 1.8 1.0
Lma87 0.658 93.5 (43/46) 80.9 3.1 2.5 1.4

Paired
Lma102, Lma120 0.310 89.1 (41/46) 84.2 0.91 0.77 0.53
Lma102, Lma87 0.362 87.0 (40/46) 79.6 1.1 0.91 0.60
Lma120, Lma87 0.370 87.0 (40/46) 79.3 1.1 0.93 0.61

All
Lma102, Lma120 0.204 87.0 (40/46) 83.6 0.61 0.54 0.42
Lma87 (31–93) (39–93) (65–93)

Range 0.204–0.658 87.0–93.5 75.8–84.2 0.61–3.1 0.54–2.5 0.42–1.4

NGdad and ngdad are defined in Neff et al. (2000). Pat is the paternity estimate for the parental male. Three estimates of the variance associated 
with Pat are provided. The first assumes that there is one mother and two males (one parental and one cuckolder); the second assumes that 
there are two effective mothers and two males; the third assumes that there are four effective mothers and seven males (one parental and 
six effective cuckolders). The 95% confidence interval is included for the estimates based on all loci. The range in values is also indicated.
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are produced by the putative parent (e.g. paternity)
increases, the variance decreases (Fig. 1b). The effect of a
small change in paternity is greatest when paternity
is low and when 

 

NG

 

 is large. Paternity also influences
sampling error, but has a significant effect only at very
low values of 

 

NG

 

. Fourth, as the number of individuals
that genetically contribute to the NGIs increases, the
variance decreases (Fig. 1c). The effect of a small change
in number of effective breeders is greatest when there
are few and when 

 

NG

 

 is large. When 

 

NG

 

 is zero, the
number of effective breeders has no effect on the variance.

The expected value of 

 

NG

 

 decreases as the number of
alleles or the number of loci increases (Fig. 2; Appendix
II). With only a moderate number of polymorphic loci,
low values of 

 

NG

 

 are obtained. For example, the cor-
responding values of 

 

NG

 

dad

 

 or 

 

NG

 

mom

 

, 

 

NG

 

pair

 

 and 
or  for one locus with five equally common alleles
are 0.5840, 0.2282 and 0.4048, respectively. With five such
loci these values decrease to 0.0679, 0.0006 and 0.0109,
respectively.

 

How many loci and offspring?

 

Increasing the number of NGIs or decreasing 

 

NG

 

 both
decrease the variance. An example of the trade-off in the
number of loci (as measured by 

 

NG

 

) and the number
of offspring (NGIs) in determining the variance in a
paternity estimate is shown in Fig. 3. A desired variance
of 0.009 could be achieved with 30 NGIs and an 

 

NG

 

dad

 

 of

 

≈

 

 0.27 or with 50 NGIs and an 

 

NG

 

dad

 

 of 

 

≈

 

 0.44. Suppose that
we could obtain an 

 

NG

 

dad

 

 value of 0.44 and 0.27 with one locus
and two loci, respectively. As in the first instance, examin-
ing 30 NGIs with two loci would require 60 genotypes,
while, as in the second instance, examining 50 NGIs with
one locus would only require 50 genotypes. Both approaches
provide an estimate with the same variance and therefore
confidence. However, the second approach would require
fewer genotypes and would thus be more efficient.

As a second example, suppose that there are genotypes
from 30 NGIs with sufficient loci to obtain an 

 

NG

 

dad

 

 value
of 0.27 and that it is desirable to decrease the variance
from 0.009 to 0.006. This could be accomplished by either

NGpair
mepf

NGpair
depf

 

Fig. 1

 

The variance in an estimate of paternity is effected by the
value of 

 

NG

 

dad

 

, the number of next-generation individuals (NGIs),
paternity and the effective number of breeders, as shown. The
relationships are derived from the Two-Sex Paternity model using
eqn A1.2, but they are also applicable to all the models. (a) The
variance in the estimate decreases as the number of NGIs increases
or as the value of 

 

NG

 

dad

 

 decreases. The expected variance is shown
for three sample sizes of NGIs (solid line = 50 NGIs; long-dashed
line = 30; short-dashed line = 10). At an 

 

NG

 

dad

 

 value of zero, the
entire variance a result of sampling error. In this example, the
paternity of the putative father was 80% and five cuckolder
males and five females contributed genetically to the brood.
(b) The variance in the estimate decreases as paternity increases

(except at very low values of 

 

NG

 

dad

 

 where sampling error is the
major source of variance). The expected variance is shown for
three values of paternity (Pat) (solid line = 80%; long-dashed line
= 50%; short-dashed line = 20%). In this example, 30 NGIs were
analysed and five cuckolder males and five females contributed
to the brood. (c) The variance in the estimate decreases as the
effective number of breeders increases. The solid line represents
10 effective breeders, five cuckolder males and five females, in
addition to the putative father. The dashed lines represent four
effective breeders in addition to the putative father (short-
dashed line: one cuckolder male and three females; long-dashed
line: two cuckolder males and two females). In this example, 30 NGIs
were analysed and the paternity of the putative father was 80%.
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examining an additional 20 NGIs (50 total) with the same
loci used to genotype the initial 30 or obtaining geno-
types from the initial 30 NGIs with additional loci to
reduce the value of 

 

NG

 

dad

 

 to 

 

≈

 

 0.06 (see Fig. 3). An optimal
approach would require the least additional effort and
cost. Suppose that two loci were used to obtain the geno-

types from the initial 30 NGIs and that it would require
another two loci to obtain a 

 

NG

 

dad

 

 value of 0.06. The first
option, of running 20 additional NGIs, would require the
generation of only 40 additional genotypes (20 NGIs 

 

×

 

 two
loci). The second option, of running the initial 30 NGIs
with the additional two loci, would require the generation
of 60 additional genotypes (30 NGIs 

 

×

 

 two loci). Again,
both approaches provide the same level of confidence,
but the first would require fewer additional genotypes
and would thus be more efficient.

 

Biological example

 

Table 1 presents the variances in the seven paternity
estimates for the parental male bluegill. The variance
decreases with decreasing value of 

 

NG

 

dad

 

 (i.e. increasing
resolving power of the loci) and as the effective number
of breeders increases. As expected, the paternity estimate
based on all three loci was the most precise. Furthermore,
the estimate under the assumption that there is only one
effective mother and one effective cuckolder father had
the greatest variance and therefore was the most con-
servative. The estimate under the assumption of two
effective mothers and one effective cuckolder was the
next most conservative, and the estimate under the
assumption of four effective mothers and six effective
cuckolder fathers was the least conservative. However,
the latter estimate may be the most accurate because
in Lake Opinicon the population breeding ratios are
approximately four females and six cuckolder males
to each parental male (Gross 1982, 1991). Therefore,
based on all three loci, we conclude that the parental
male bluegill has a probable paternity of 83.6 

 

±

 

 7% (SD;
variance = 0.42%; 95% CI: 65–92%).

Fig. 2 The expected value of NG decreases
as the number of alleles increases, as shown
for NGdad or NGmom,  or  and
NGpair for loci with one to 20 equally common
alleles.

NGpair
mepf NGpair

depf

Fig. 3 An example of how the trade-off between the number of
next-generation individuals (NGIs) and the number of loci can
be assessed. The two heavy solid lines represent the relationship
between the total variance in the paternity estimate and the
value of NGdad for 30 and 50 NGIs. As an example (also see the
text), a variance of 0.006 could be obtained by analysing 30 NGIs
with sufficient loci to obtain a NGdad value of ≈ 0.06 or by
analysing 50 NGIs with fewer loci having a NGdad value of only
≈ 0.27. The optimal approach would probably require the genera-
tion of the fewest genotypes. The lines were derived using
eqn A1.2 assuming five females and five cuckolder males and a
paternity for the putative father of 80%.
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Discussion

 

We have presented formulas to calculate the statistical
confidence associated with the parentage estimates made
using the models of Neff 

 

et al

 

. (2000). These models
estimate the proportion of offspring fathered or mothered
by a putative parent and are particularly useful for
analysing large sample sizes. When analysing parentage
of a large number of individuals, sampling regimes for
both offspring and loci are necessary. Therefore, we have
also presented methods that use the confidence formulas
to determine the optimum number of offspring and loci
to achieve a desired level of statistical confidence.

Studies addressing statistical confidence in parentage
estimates have focused on models that assume complete
sampling of candidate parents. These models attempt to
exclude all but the genetic parents or assign an offspring
to the most probable nonexcluded pair (e.g. Chakraborty

 

et al

 

. 1974; Meagher 1986; Thompson 1986; Thompson &
Meagher 1987; Evett & Weir 1998). Confidence statistics
for these models calculate the probability of identifying
the true parents and emphasize the number of genetic
loci needed (Chakraborty 

 

et al

 

. 1988; Double 

 

et al

 

. 1997;
Estoup 

 

et al

 

. 1998; Marshall 

 

et al

 

. 1998). By contrast, the
confidence statistics for our models calculate the variance
associated with the estimated proportion of offspring
fathered or mothered by a putative parent, and emphasize
the optimal numbers of both loci and offspring.

The confidence of the parentage estimates is influ-
enced by both the number of NGIs analysed and the
number of genetic loci used. These factors represent a
trade-off in the total number of genotypes analysed. As
such, most laboratories would like to maximize their pro-
ductivity by optimizing this trade-off. We provide the first
methods to determine the optimal number of NGIs and loci
needed to obtain parentage estimates with a desired level
of confidence. Generally, when the putative parent has low re-
productive success (< 25%) the emphasis is on implementing
additional loci, especially when at least 30 NGIs are analysed.
However, at higher success (> 80%) the emphasis may be on
increasing either the number of NGIs or the number of loci.
The confidence formulas enable researchers to determine
the minimum number of NGIs and loci needed to obtain
parentage estimates with a desired level of confidence. As
such, these methods should greatly increase the efficiency of
parentage analysis.

The confidence of the parentage estimates also depends
on the putative parent’s reproductive success and the
effective number of breeders that contribute to a sample
of NGIs. Generally, neither of these parameters can be
manipulated and therefore nothing can be done with
them to increase confidence. However, all else equal,
estimates for putative parents with higher reproductive
success or from samples of NGIs that are produced by a

greater number of effective breeders will have greater
confidence. These results can be used to provide more
precise parentage estimates. For example, suppose that
for a sample of NGIs there was a single genetic mother
and two potential genetic fathers (e.g. a parental male
and a cuckolder male), and that we could catch only one
of these males. As there are only two males, their patern-
ities (expressed as a proportion) must total to one. Based
on biological data (e.g. behavioural data), suppose that
we anticipate that the parental male will have higher
paternity than the cuckolder male. If we can collect only
one male, we should collect the parental male and estim-
ate his paternity and use it to calculate the cuckolder’s
paternity (i.e. one less the paternity of the parental male)
because this will maximize the precision of the estimates.

The confidence statistics developed here require five
parameters, of which several may be unknown. First, the
total number of NGIs is sometimes too large to count
accurately (e.g. the broods of many fish can contain tens
of thousands of NGIs). However, the total number of
NGIs is not required if it is much larger than the number
sampled because the sampling error can be calculated
with accuracy (Zar 1999). By contrast, if the total number
of NGIs is not much larger than the sample (but is
unknown) then the binomial approximation will over-
estimate the true sampling error and will thereby provide
a conservative estimate of the true confidence.

Second, the frequency of a putative parent’s alleles will
often be estimated from a sample of the breeding popu-
lation. The sampling error in the allele frequencies can
introduce a small bias into the parentage estimates, but
does not introduce variance into the confidence estimates
(see Neff 

 

et al

 

. 2000 and Appendix I). Therefore, although
sampling error in the allele frequency estimates should be
minimized to mitigate a potential bias, it does not directly
influence the calculation of confidence.

Third, we have suggested that the calculated paternity,
maternity or parentage can be used as an estimate of its
actual value. The calculations from the models provide
accurate estimates (see Neff 

 

et al

 

. 2000) and if the putat-
ive parent or parent pair has a rare multilocus genotype
then the estimate is also precise. In such cases, the true
value will not vary much from this estimate. Further-
more, small differences in the value used for the actual
paternity, maternity or parentage do not substantially
influence the predicted variance when 

 

NG

 

 is small. As
an example, consider the bluegill sunfish. Based on only
three loci (

 

NG

 

dad

 

 = 0.204) we estimated the paternity of
the parental male to be 83.6 

 

±

 

 7% (95% CI: 65–92%). If we
had assumed that the actual paternity of the parental
male was 65% (lower 65% CI) then the associated standard
deviation in the estimate would be only marginally higher,
at 9%. Therefore, using the estimate as the actual value
should not influence the predicted variance significantly,
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especially when 

 

NG

 

 is small. Furthermore, the CI calcula-
tion does not require the actual reproductive success of
the putative parent or parents.

Finally, we described three approaches to estimate the
effective number of breeders. The simplest and most con-
servative approach is to assume that there is only one of
each. In this case, the calculation provides a minimum
level of confidence (i.e. a maximal estimate of the vari-
ance), and can significantly underestimate the true level
of confidence. For example, consider the bluegill sunfish.
Using the population breeding ratios of six cuckolder males
and four females per parental male, we determined that the
95% CI was 65–92%. However, if we assume that there
was only one cuckolder male and one female then the CI
is considerably larger, at 31–93%. Therefore, researchers
may wish to consider both the most conservative estimate
of the effective number of breeders and potentially better
estimates, such as the population breeding ratios.

It is possible that the robustness of the parentage esti-
mates could be assessed in a more 

 

ad hoc

 

 manner using
bootstrap approaches in subsequent statistical analyses
involving the estimates. However, this approach would
not allow the calculation of the optimal trade-offs in the
number of loci and offspring. Furthermore, the confid-
ence statistics presented here allow partitioning of the
parentage data according to precision, which can in turn
be used to increase statistical power in subsequent analyses.

We have previously made seven estimates of the
paternity of the parental male bluegill to the brood within
his nest. These estimates were based on three microsatel-
lite loci treated individually, in pairs and collectively.
Although we suspected that the estimate based on all
three loci was the most precise, we did not known how
precise it was. We now know that of the seven estimates it
is, in fact, the most precise and that the variance is two to
three times lower than for the three loci used indi-
vidually. We therefore conclude that the paternity of
the parental male bluegill is 83.6 

 

±

 

 7% (95% CI: 65–92%).
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Appendix I

Derivation of the variance associated with estimates of
paternity (Pat), maternity (Mat) and parentage (Par) in
Neff et al. (2000).

The derivation for the confidence in the Two-Sex Pater-
nity model is presented in detail. The remaining models
are presented more concisely. All variables not defined
here are defined in Neff et al. (2000).

Two-Sex Paternity or Maternity

Here we derive the confidence for the Two-Sex Paternity
model; the derivation for the Two-Sex Maternity model is
analogous. From Neff et al. (2000):

Pat = 

The variance in the estimate Pat can be expressed as:

var (Pat) = var (A1.1)

NGdad is a constant for a given putative father’s genotype
(see Neff et al. 2000) and therefore:

var (Pat) = (A1.2)

If we assume that n NGIs have been sampled and
analysed from a total of N NGIs, then the variance in the
proportion of NGIs that are compatible with the putative
father can be calculated from:

var (ngdad) = (A1.3)

Here, Pr(k) is the probability that k of the n NGIs are
compatible with the putative father and  is the
expected proportion of the n NGIs that are compatible
with the putative father, and is calculated from:

 = (A1.4)

The probability Pr(k) has two components, and is
calculated from:

Pr(k) = (A1.5)

The first component is a sampling probability that is
dependent on the vector n = (n1, n2 = n–n1), where n1 and
n2 are the numbers of the n NGIs that are produced by the
putative father and other fathers, respectively. The
sampling probability depends on the number of NGIs
sampled (n), the total number of NGIs for which the
paternity estimate is being made (N) and the paternity of
the putative father (Pat), and can be calculated from:

Pr(n) = (A1.6)

where

N1 = Pat · N; (A1.7)

N2 = (1 − Pat) · N = N − N1. (A1.8)

Note that N1 and N2 will be integers because Pat is
defined as the proportion of the N NGIs that belong
to the putative father and therefore can only take on
the values of 0/N, 1/N, … , or N/N. As an example, if
50 offspring were analysed from a brood of 1000 and the
putative father had a paternity of 80% then n = 50,
N = 1000, N1 = 800 and N2 = 200. If N is much larger than
n (e.g. if n is not > 5% of N) then eqn A1.6 can be
approximated by the binomial theorem (Zar 1999):

(A1.9)

Note that this equation is independent of the total
number of NGIs (i.e. N).

The second component represents the probability that k
of the n offspring are compatible with the putative father
given that n1 of them are actually produced by him. It is
dependent on the number of effective mothers (M), the
number of effective fathers excluding the putative father
(F), and the frequency of the alleles in the genotype of the
putative father. It is calculated from:

Pr(k|n) = 

(A1.10)

where the probability that a compatible NGI is pro-
duced from a mating between one of the M mothers and
F fathers given i and j is:

Cdad = (A1.11)

The first line of eqn A1.10 represents the probability that il
of the 2F paternal alleles and jl of the 2M maternal alleles
are shared with the putative father at each of the L loci.
The second line represents the probability that k–n1 of the
n2 NGIs are compatible (i.e. inherit at least one allele that
is shared) with the putative father given i of the paternal
and j of the maternal alleles are shared with him. The
summation is over all combinations of ils and jls
satisfying il ≤ 2F and jl ≤ 2M for every l. Eqn A1.10
assumes that the number of effective fathers (F) and
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mothers (M) are whole numbers. We have also developed
a formula that incorporates the variance in reproductive
success among genetic parents and therefore allows a
fractional number of effective breeders. However, it is not
presented here as it is unlikely that both the number of
genetic parents and the variance in their reproductive
success will be known and therefore its usefulness is
limited. It can be shown that eqn A1.10 follows from this
more complex formula with the assumption that each of
the F fathers and each of the M mothers have equal
reproductive success (see the Discussion for methods to
estimate F and M).

Two-Sex Parentage

The derivation of the Two-Sex Parentage model follows
an analogous approach to the previous model. Here we
derive the variance associated with the parentage estim-
ate assuming that Par = Pat = Mat (i.e. assuming that the
putative parents have their entire success with each other).
The derivation for other cases is considerably more
elaborate and is not presented here. Given Par = Pat = Mat,
the variance in Par can be calculated from:

var (Par) = (A1.12)

The variance in ngpair can be calculated from:

var (ngpair) = (A1.13)

The expected value of ngpair can be calculated from:

 = (A1.14)

The probability Pr(k) is defined above (eqn A1.5). For this
model the vector n contains two elements (n1, n2 = 1–n1),
where n1 and n2 are the numbers of the n NGIs that are
produced by the putative parents and other parents,
respectively. The first component of eqn A1.5, the pro-
bability of observing the allocation n, can be calculated
from:

Pr(n) = (A1.15)

where

N1 = Par · N; (A1.16)

N2 = (1 − Par) · N = N − N1.  (A1.17)

or if N » n then:

 (A1.18)

The second component from eqn A1.5 can be calculated
from:

Pr(k|n) = (A1.19)

where

Pr(k|n, x, y) = (A1.20)

(A1.21)

Pr(x) = (A1.22)

Pr(y) = 

(A1.23)

and  is the sum of the frequency of the putative father’s
unique alleles that are not shared with the putative
mother at locus l;  is analogous to 

 is the sum of the frequency of the unique alleles
shared by the putative father and putative mother at
locus l.

In eqn A1.19 we must calculate the probability that k
of the n NGIs are compatible with the putative parents.
As only n1 are produced by the putative parents, k–n1
are compatible by chance and are produced by mat-
ings between females and males other than the putative
parents.

The matrix x contains L (number of loci) rows and three
columns. For a given row (locus l), the elements in the
three columns (xl1, xl2, xl3) are indices representing the
number of the 2F effective paternal alleles that are equival-
ent to at least one of the putative father’s but none of the
putative mother’s, at least one of the putative mother’s
but none of the putative father’s, and at least one of the
putative father’s and at least one of the putative
mother’s, respectively. The matrix y is defined ana-
logously for the 2M effective maternal alleles. The prob-
ability of a particular x or y distribution is calculated
based on the binomial theorem and the frequency of the
putative mothers’ and fathers’ shared and unshared alleles
(see eqns A1.22 and A1.23). The summation in eqn A1.19
is over all combinations of xlis and ylis satisfying

and for every l.
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Single-Sex Paternity or Maternity

Here we derive the confidence for the Single-Sex Paternity
model; the derivation for the Single-Sex Maternity model
is analogous. The variance in the paternity estimate can
be calculated from:

var (Pat) = (A1.24)

where

var (ngpair) = (A1.25)

The expected value of ngpair and Pr(k) are defined
above (eqns A1.14 and A1.5, respectively). Here, Pr(k|n)
is calculated from:

Pr(k|n) = (A1.26)

where the probability that a compatible NGI is produced
from a mating between the genetic mother and one of the
F fathers given i and j is:

Cpair = (A1.27)

The first line in eqn A1.26 represents the probability that il
of the 2F paternal alleles are shared with the putative
father and jl of the 2F paternal alleles are equivalent to the
genetic mother’s unshared allele (with frequency Plu)
when she is heterozygous and shares exactly one allele
with the putative father at locus l (see Neff et al. 2000).
The second line represents the probability that k–n1 of the
n2 NGIs are compatible with the putative parents given i
and j. The summation is over all combinations of ils and
jls satisfying (il + jl) ≤ 2F for every l.

Confidence Intervals

The formulas derived above can be used to calculate a
confidence interval (CI). As an example, consider the
Two-Sex Paternity model (the other models follow the
same format). To calculate a CI we need to generate
the distribution for the probability that a putative father
has a paternity Pat given the observed ngdad over the
range of possible paternity values (Pat = 0–1). From
Bayes’ rule this can be calculated from:

(A1.28)

Recall that eqn A1.5 represents the probability that k of
n offspring are compatible with the putative father given

his paternity and therefore provides a formula to cal-
culate Pr(ngdad|Pat) (where k = ngdad × n). The prob-
ability Pr(ngdad) is a constant given the putative father’s
multilocus genotype and the effective number of parents
that contribute to the NGIs, and therefore becomes part
of the normalization constant (C) when the probability
distribution is normalized such that the area under the
curve (range Pat = 0–1) equals one. The a priori probability
of a given paternity (Pr(Pat)), however, is generally
unknown. A conservative assumption is to assume that
this probability follows a uniform distribution and is
therefore a constant for any given Pat (Pena & Chakraborty
1994; Smouse & Meagher 1994; B. D. Neff et al. unpub-
lished). In this case, Pr(Pat) also becomes part of the
normalization constant and therefore we have:

(A1.29)

As an example, the 95% CI is calculated from the
distribution generated from eqn A1.29 by determining the
values of Pat corresponding to areas of 2.5% and 97.5%.

The formulas derived in this appendix can be computa-
tionally intensive depending in the numbers of loci and
effective breeders. However, these formulas can be easily
evaluated using Monte Carlo simulations. In future work
the authors will make software available.

Appendix II

Derivations of the expected values of NGdad (NGmom),
NGpair, and  

For a given locus and population, the expected value of
NGdad (NGmom is analogous) is the sum of its values for
each possible genotype weighted by the frequency of the
genotype:

 = (A2.1)

where  is the expected value of NGdad for a given
locus; A is the number of alleles at the locus; and NGij is
the value of NGdad given the genotype consisting of alleles i
and j, and is calculated as in Neff et al. (2000).

The expected value for multiple loci (when considered
simultaneously) is the product of the expected NGdad
values for each locus. The expected value of NGpair for a
given locus is:

 = (A2.2)

where  is the expected value of NGpair for a given
locus; and NGijkm is the value of NGpair given the father’s
genotype consisting of alleles i and j and the mother’s
genotype consisting of alleles k and m, and is calculated
as in Neff et al. (2000).
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The expected value for multiple loci (when considered
simultaneously) is the product of the expected NGpair values
for each locus. The expected value of  (  is
analogous) is:

 = (A2.3)

where  is the expected value of  for a given
locus; and  is the value of  given the father’s
genotype consisting of alleles i and j and the mother’s
genotype consisting of alleles k and m, and is calculated
as in Neff et al. (2000).

The expected value for multiple loci (when considered

simultaneously) is the product of the expected 
values for each locus. Finally, because the degree of poly-
morphism at a locus depends on both the number of alle-
les and their frequencies, it is useful to present an
equation for the effective number of alleles:

Ae = (A2.4)

The effective number of alleles represents a locus with
equivalent resolving power, but with Ae equally common
alleles. The value of Ae can be used with Fig. 2 to
determine the expected values of NG for the original
locus having A alleles.
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